
GIScience & Remote Sensing

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tgrs20

Enhancing urban resilience through Tomo-PSInSAR-
based structural health monitoring

Yi-Ching Chen, Yunung Nina Lin, Tee-Ann Teo, Chin-Yeh Chen, Tian-Yuan Shih
& Hsin Tung

To cite this article: Yi-Ching Chen, Yunung Nina Lin, Tee-Ann Teo, Chin-Yeh Chen, Tian-
Yuan Shih & Hsin Tung (2025) Enhancing urban resilience through Tomo-PSInSAR-
based structural health monitoring, GIScience & Remote Sensing, 62:1, 2482329, DOI:
10.1080/15481603.2025.2482329

To link to this article:  https://doi.org/10.1080/15481603.2025.2482329

© 2025 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 25 Mar 2025.

Submit your article to this journal 

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgrs20

https://www.tandfonline.com/journals/tgrs20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/15481603.2025.2482329
https://doi.org/10.1080/15481603.2025.2482329
https://www.tandfonline.com/action/authorSubmission?journalCode=tgrs20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tgrs20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/15481603.2025.2482329?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/15481603.2025.2482329?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/15481603.2025.2482329&domain=pdf&date_stamp=25%20Mar%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/15481603.2025.2482329&domain=pdf&date_stamp=25%20Mar%202025
https://www.tandfonline.com/action/journalInformation?journalCode=tgrs20


Enhancing urban resilience through Tomo-PSInSAR-based structural health 
monitoring
Yi-Ching Chena*, Yunung Nina Lin a, Tee-Ann Teob, Chin-Yeh Chena, Tian-Yuan Shihb and Hsin Tunga

aInstitute of Earth Sciences, Academia Sinica, Taipei, Taiwan; bDepartment of Civil Engineering, National Yang Ming Chiao Tung University, 
Hsinchu, Taiwan

ABSTRACT
Structural health monitoring (SHM) is crucial for aging buildings, especially in areas with frequent 
seismic activities, but the cost is often prohibitive for most private property owners. This study 
explores the feasibility of large-scale SHM using tomographic persistent-scatterer interferometric 
synthetic aperture radar (Tomo-PSInSAR) within an urban planning context. By applying Tomo- 
PSInSAR to TerraSAR-X/TanDEM-X data over the Taipei Basin, a workflow is developed to assess 
building settlement and tilt rates. The analysis identifies 11.6% of building polygons as eligible for 
SHM, with 10.8% of these showing anomalous deformation. Peak settlement and tilting rates reach 
−14 mm/yr and 1/760 yr−1, respectively. Among buildings within urban regeneration plans, 9.4% 
are eligible for analysis, with 11.9% of them exhibiting deformation anomalies. Building age and 
soil properties partially explain variability in deformation anomalies, but additional factors are 
needed to fully account for it. For instance, the high deformation anomalies observed in buildings 
aged 30–50 years may be attributed to poor construction quality and the use of inadequate 
materials, such as sea sand in concrete. Several key factors affecting SAR-based SHM performance 
are identified: insufficient scatterers, uneven scatterer spatial distribution, the absence or geo
metric inaccuracy of building polygons, and missing age information. These limitations can be 
addressed through integrating SAR data from multiple viewing geometries, increasing acquisi
tions, and developing closer collaboration with government agencies.
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1. Introduction

Over the past century, cities around the globe have 
experienced rapid and unprecedented growth. Today, 
55% of the world’s population reside in urban areas, a 
figure projected to rise to 68% by 2050 (United 
Nations and Population Division 2019). With the 
sharp increase in demand and, in some cases, inade
quate regulations and practices, the quality of con
struction can vary. Historical data on building 
collapses over the past 125 years reveal that structural 
failure – including faulty design, construction, renova
tion, mechanical errors, and fatigue failure – accounts 
for 47% of the 152 reported incidents (Figure 1(a)). 
This issue has become increasingly prevalent over 
time, particularly since the 2000s, with 17 structural 
failures reported between 2010 and 2019, and 15 
between 2020 and 2024 (Figure 1(b)). The spike in 
cases at the start of the 21st century may be attributed 
to more advanced methods of news dissemination, 

and/or the aging of buildings constructed in the pre
vious century. Structural failure is not an issue con
fined to developing nations; it is equally common in 
developed countries, such as in North America and 
Europe (Figure 1(c)). One of the most notable recent 
examples is the 2021 Champlain Towers South col
lapse in Florida, which resulted in 98 deaths and 11 
injuries. Initial investigations suggest that the collapse 
was caused by a combination of structural failures 
due to multiple factors occurring simultaneously 
(https://en.wikipedia.org/wiki/Surfside_condomi 
nium_collapse, last accessed on August 2024).

Building collapses due to structural failure, as 
opposed to those caused by force majeure factors 
like weather, earthquakes, mass movement, or con
flicts, often provoke greater social outrage and unrest. 
This is because such tragedies are theoretically pre
ventable. In many instances, the total economic loss 
far exceeds the compensation available through all 
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kinds of claims (for example, https://ww3.rics.org/uk/ 
en/modus/business-and-skills/surveying-stories/ 
champlain-towers–valuation-in-the-aftermath-of-tra 
gedy.html, last accessed in August 2024). These soci
etal and economic impacts underscore the impor
tance of adequate and safe housing, which is a 
primary objective of the 11th Sustainable 
Development Goal, focusing on sustainable cities 
and communities (SDG 11, https://www.undp.org/sus 
tainable-development-goals/sustainable-cities-and- 
communities, last accessed in June 2024).

Achieving adequate and safe housing for everyone 
requires a focus on resilient urban planning. Urban 
planning is a complex, multidimensional process that 
seeks to guide the physical, social, economic, and 
environmental development of cities. It entails craft
ing a vision for a city’s future and implementing stra
tegies such as land-use planning, zoning, 

infrastructure development, housing provision, and 
cultural heritage preservation (Pacione 2005). Urban 
resilience complements urban planning by enhancing 
a city’s ability to anticipate, adapt to, and recover from 
shocks and stressors. It involves preparing for poten
tial threats, mitigating impacts, rebuilding after a cri
sis, and adaption to long-term changes (Chmutina, 
Ganor, and Bosher 2014; Sharifi and Yamagata 2014). 
By integrating resilience into urban planning, cities 
can proactively address risks and improve their recov
ery capabilities. In this respect, the United Nations' 
Crisis Resilient Urban Futures report offers valuable 
guidelines for fostering urban resilience. Among 
them, strengthening infrastructure and buildings to 
withstand natural disasters and climate change is 
considered crucial for protecting lives, property, and 
essential services during extreme events (Economic 
and Social Commission for Asia and the Pacific 2023).

Figure 1. Causes, temporal trends and spatial distribution of building collapses worldwide. Source of data:https://en.Wikipedia.org/ 
wiki/List_of_building_and_structure_collapses (last accessed in August 2024). (a) Causes of building collapse from a list of 152 
reported cases between 1900 and 2024. (b) Temporal trends of reported building collapses, including those due to structural failure. 
(c) Spatial distribution of casualties associated with building collapse cases resulting from structural failure. Red numbers indicate the 
number of collapse cases.
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A vital tool for identifying buildings and infrastruc
ture at risk is structural health monitoring (SHM). SHM 
involves collecting, interpreting, and analyzing data 
from structures to assess their health status and esti
mate their remaining life span. This process also sup
ports informed decision regarding rehabilitation and 
retrofitting efforts (Balageas, Fritzen, and Güemes  
2006). Despite significant advancements in SHM tech
niques over the past decades, several challenges 
remain. Since SHM usually requires installing instru
ments at specific locations on structures, issues such 
as site accessibility, environmental constraints, device 
maintenance, and data transmission frequently arise. 
Moreover, the time and financial costs often hinder its 
widespread adoption (Rai 2024). However, with urban 
area expanding at a global average annual rate of 
1.8% – and even faster in developing countries 
(United Nations and Population Division 2019) – scal
able and cost-effective SHM solutions will be helpful 
in alleviating the rising cost of urban building and 
infrastructure maintenance, enabling better manage
ment of resilience (Gielen et al. 2019).

Over the past decade, the growth of active and 
passive satellite missions has demonstrated the 
potential of remote sensing to provide large-scale, 
cost-effective solutions for addressing vulnerabilities 
in urban areas. The scope of application includes 
urban heat island effect, slums and informal settle
ments, urban floods, green space, and carbon-dioxide 
emissions (Wellmann et al. 2020; Zhu et al. 2019). 
Insights from remote sensing-based studies have 
even informed actionable management strategies 
(Katz and Batterman 2019; Yu et al. 2012). For mon
itoring man-made structures, satellite-borne synthetic 
aperture radar (SAR) systems have become increas
ingly valuable due to their ability to acquire images 
and detect deformation signals in a large area regard
less of weather conditions or time of day (Fornaro and 
Pascazio 2014). For instance, before the collapse of 
the Champlain Towers South, multi-temporal inter
ferometric synthetic aperture radar (MTInSAR) obser
vations detected ongoing deformation at a rate of 
~2 mm/yr (Fiaschi and Wdowinski 2020).

One widely used MTInSAR technique for monitor
ing manmade structures is persistent scatterer inter
ferometry (PSInSAR). Developed in the early 2000s, 
PSInSAR is designed to measure surface deformation 
by analyzing persistent scatterers (PSs) in a series of 
images acquired with the same geometry (Ferretti, 

Prati, and Rocca 2000; Hooper et al. 2004; Hooper, 
Segall, and Zebker 2007). This technique has been 
particularly successful in monitoring structures within 
urban areas, where persistent scatterers are abun
dant. PSInSAR has been employed to identify issues 
from local-scale, tunneling-induced building defor
mation (Giardina et al. 2019; Macchiarulo et al.  
2021), to medium- and large-scale, settlement- 
induced deformation (Cerchiello et al. 2017; 
Drougkas et al. 2020a, b; Giardina et al. 2019; 
Macchiarulo et al. 2021). When integrated with 
machine learning and probabilistic models, PSInSAR 
results can enhance the detection of infrastructure 
failures and the identification of risk zones, providing 
critical information for urban managers (Rodríguez- 
Antuñano et al. 2022, 2023, 2024).

Despite the popularity in man-made structure 
monitoring, PSInSAR faces certain challenges when 
applied to SHM. One challenge is the assumption 
that each resolution cell contains a single scatterer, 
which limits the number of usable scatterers for asses
sing the deformation of individual buildings. Another 
issue is the positioning of the scatterers: PS points are 
typically assigned to the center of each resolution cell, 
which may not accurately reflect their actual true 
locations and deformation velocities, leading to 
potential misinterpretation of results.

To address these challenges, tomographic syn
thetic aperture radar (TomoSAR), also known as SAR 
tomography, was introduced to resolve the ambigu
ities in scatterer numbers and positions within each 
resolution cell (Reigber and Moreira 2000). TomoSAR 
extends the concept of aperture synthesis to the third 
dimension – the elevation direction – which is per
pendicular to the range-azimuth plane of a SAR 
image. A 2D SAR image can be considered a projec
tion of actual 3D features observed from a specific 
sensing geometry, with each pixel representing the 
backscattered responses from one or more objects at 
the same distance from the sensor. By leveraging the 
multi-baseline approach, where the same object is 
observed from slightly different viewpoints across 
multiple tracks, TomoSAR reconstructs the complex 
reflectivity profile along the elevation direction. This 
capability allows TomoSAR to build 3D urban models 
from space (Fornaro and Pascazio 2014; Fornaro et al.  
2012; Zhu and Bamler 2010a). Depending on the 
model complexity, TomoSAR can be further extended 
into a multi-dimensional model space, enabling the 
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estimation of geophysical properties such as the scat
terers’ line-of-sight (LOS) linear velocity and thermal 
expansion parameters (Zhu et al. 2016). Several stu
dies have demonstrated TomoSAR’s potential in con
ducting structural deformation analysis (Budillon and 
Schirinzi 2022; Ma et al. 2015).

Promising as TomoSAR’s potential may be, most 
research has focused on the deformation of a limited 
number of selected buildings (Budillon and Schirinzi  
2022; Chen et al. 2019; Ma and Lin 2016) or heritage 
sites (Chen et al. 2021). To date, there has been no 
systematic evaluation of the efficiency and effective
ness of TomoSAR in the broader context of urban 
planning. Specifically, while a comprehensive urban 
model can be reconstructed using more than 450 SAR 
images from multiple viewing geometries (Zhu et al.  
2016), such extensive datasets are usually not avail
able in most scenarios. There are two critical ques
tions from the urban planning’s perspective. First, 
what proportion of buildings with detectable defor
mation can be resolved if only a small fraction of the 
SAR data is available? Second, how to translate 
TomoSAR results into actionable insights for urban 
planners, who are more concerned with the overall 
structural deformation of buildings rather than the 
deformation velocities of individual scatterers?. 
Addressing these two questions is essential for inte
grating TomoSAR into large-scale SHM applications 
and making it a practical tool for urban planning 
and management.

To address the two questions mentioned above, 
detailed urban planning data and other relevant 
background information are needed. This study 
focuses on the Taipei Basin, where comprehensive 
information about private properties is accessible 
with necessary permissions (note: most of the data 
is not publicly accessible due to privacy concerns). 
Located in northern Taiwan, the Taipei Basin encom
passes Taipei City and the surrounding New Taipei 
City, with a combined population of approximately 7 
million people. Taipei City alone is home to 2.6 
million residents and has a population density of 
9,545 people/km2 (2020 Population and Housing 
Census, National Statistics, https://eng.stat.gov.tw, 
last accessed in December 2024). The basin is char
acterized by a high-temperature, high-humidity 
environment and is frequently impacted by natural 
hazards such as typhoons, earthquakes, and volcanic 
activities. These conditions, coupled with a dense 

population, are similar to those faced by many 
large cities in Japan (and also in Southeast Asia). 
Consequently, both Taiwan and Japan have widely 
adopted reinforced concrete buildings to address 
their hazardous natural environment (Lee 2015). A 
unique challenge for Taipei is the wide-spread 
soft soil within the basin as a result of its geolo
gical history, which further increases the vulner
ability of buildings and infrastructure during 
seismic events. Insights and lessons learned from 
large-scale SHM analysis in the Taipei Basin could 
therefore serve as a reference for cities with simi
lar conditions.

In this work, we demonstrate the application of the 
Tomo-PSInSAR technique – a combination of 
TomoSAR and PSInSAR – for monitoring building 
deformation in Taipei. With the generous support of 
the TerraSAR-X science proposal from the German 
Aerospace Center (DLR), we gained access to 41 
TerraSAR-X/TanDEM-X SAR archive images spanning 
2.5 years. The TerraSAR-X and TanDEM-X satellites are 
equipped with precise orbit control and a sufficiently 
wide baseline distribution (nearly ±450 m), two essen
tial factors for effectively forming the aperture in the 
elevation direction to enable tomography. The high 
spatial resolution (~3 m) of their stripmap images also 
makes it ideal for urban applications. We obtain scat
terer velocities from these images and develop a 
workflow to extract building-level deformation, 
including settlement and tilting rates. We identify 
buildings exhibiting deformation anomalies across 
different factors, such as age groups and soil proper
ties, followed by validation and field observations. We 
also evaluate the completeness of information from 
urban planning’s perspective and discuss how to 
further improve the efficacy. Finally, we provide man
agement recommendations regarding how to incor
porate this tool into urban planning processes. The 
structure of this work is organized as follows: Section 
2 details the methodology, Section 3 describes the 
study area and datasets used, Section 4 presents 
results and discussions, and Section 5 provides the 
conclusions.

2. Methodology

In this section, we will first introduce the Tomo- 
PSInSAR method, an MTInSAR approach used to 
extract scatterer velocities while performing 3D 
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scatterer positioning. Next, we describe the process of 
removing long-wavelength, ground-related signals 
from the Tomo-PSInSAR velocity field to isolate 
short-wavelength, building-related signals. Finally, 
we outline the workflow for identifying two types of 
building deformation: settlement and tilt.

2.1. Tomo-PSInSAR

The Tomo-PSInSAR method, introduced by Ma and 
Lin (2016), is a two-tier network approach that com
bines the strength of PSInSAR (reliable PS selection) 
and TomoSAR (ability to detect multiple scatterers 
within the same pixel and their 3D positions). By 
pre-selecting the eligible PS points for tomographic 

analysis, this method reduces the lengthy runtime 
typically required by conventional TomoSAR. 
Additionally, it allows the detection of PS points with
out the need to initially remove the atmospheric 
phase screen (APS). By adopting tomography along 
with an M-estimator, the scatterer velocity and eleva
tion can be solved simultaneously and at a higher 
resolution.

The workflow (Figure 2) begins with image coregis
tration and differential interferometry, similar to the 
standard PSInSAR processing. Potential single PSs 
(SPSs) are then identified based on the amplitude 
dispersion index (Ferretti, Prati, and Rocca 2001). 
These SPSs, referred to as primary PS candidates 
(PPSCs), are connected using Delaunay triangulation 

Figure 2. Flowchart of the Tomo-PSInSAR method. PPSC: primary PS candidate; SPS = single PS; SPSC: secondary PS candidate; DPS = 
double PS. M-estimator: referring to an iteratively reweighted least squares estimator (Ma and Lin 2016). See section 2.1 for more 
details.
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to establish the first-tier network. For each arc formed 
between two PPSCs, one PPSC is designated as the 
start PPSC and the other as the end PPSC. By retaining 
only short arcs, APS effects can be mitigated by sub
tracting the phase of the start PPSC from the end 
PPSC. After this correction, tomography is performed 
on the end PPSC, with the details elaborated as 
follows.

Consider a repeat-pass SAR sensor that flies over 
the same area along N parallel tracks, each spatially 
separated from the reference track by Bn 

(n ¼ 1; . . . ;N). The signal model for a pixel in the 
n-th acquisition can be expressed as (Reale, Fornaro, 
and Pauciullo 2013) 

where gn is the focused complex-valued pixel in the 
n-th SAR image, and γ denotes the complex reflectiv
ity. [s, v, k] correspond to elevation, linear velocity, 
and thermal amplitude, respectively, while [�s, �v, 
�k] represent the full extent of each parameter. 
�n ¼ 2B?n=λR [m−1] is the spatial (elevation) fre
quency, where B?n, λ, and R are the perpendicular 
baseline, wavelength, and slant range distance, 
respectively. ηn ¼ 2tn=λ [s/m] is the velocity fre
quency, with tn being the epoch. ζn ¼ 2Tn=λ [K/m] is 
the thermal frequency, where Tn represents the local 
temperature.

Discretizing the continuous signal modal (1) along 
all three directions within their respective extents 
results in the following form (Ma and Lin 2016) 

where
g ¼ g1; . . . ; gN½ �

T ( �ð ÞT is the transpose operator) is 
the N � 1 measurement vector for each pixel,

A ¼ a s1; v1; k1ð Þ; . . . ; a sMs ; vMv ; kMkð Þ½ � is the N �M 
sensing matrix composed of M steering vectors a in 
the size of N � 1: 

and γ ¼ γ s1; v1; k1ð Þ; . . . ; γ sMs ; vMv ; kMkð Þ½ �
T is the M� 1 

discrete reflectivity vector. The number of discrete 
samples along the elevation, linear velocity, and ther
mal amplitude dimensions are Ms, Mv , and Mk , respec
tively, so M ¼ Ms �Mv �Mk . The corresponding 
discrete intervals are δs ¼ �s= Ms � 1ð Þ, 
δv ¼ �v= Mv � 1ð Þ, and δk ¼ �k= Mk � 1ð Þ.

Inverting (2) gives the spectral estimator γ̂: 

where �ð ÞH denotes the Hermitian operator (transpose 
and conjugate operation), and jj � jj2 represents the L2 
norm. This spectral estimator is known as beamform
ing, and the resulting output is the normalized tomo
graphic magnitude (NTM) (Figure 2). If the maximum 
NTM exceeds a specified threshold, both the start and 
end PPSCs are classified as true SPSs, and a set of 
preliminary relative parameters are determined for 
the end PPSC. Compared to other tomography recon
struction methods, beamforming is efficient and 
robust (Reigber and Moreira 2000), but it has the 
drawback of lower resolution due to limited para
meter discretization. Another issue is the inclusion of 
all SAR observations in the beamforming process, 
which may degrade the precision of parameter esti
mation if some of the observations have low signal- 
to-noise ratio (SNR). To address these limitations, the 
preliminary estimates are refined using a robust M- 
estimator (Huber 1964). This process begins with tem
poral phase unwrapping on the end PPSC, after which 
the unwrapped phase is modeled as a linear combi
nation of the following components: 

where �φn is the unwrapped phase on the end PPSC 
at the n-th acquisition epoch. By solving this equation 
using an iteratively reweighted least squares inver
sion scheme (the M-estimator) (Ma and Lin 2016), 
we can obtain a refined set of relative parameter 

estimates [̂s0; v̂0; k̂0] for the end PPSC. After retrieving 
the relative parameters for all the arcs, these values 
are integrated using network adjustment to derive 

the absolute parameter estimates [̂s; v̂; k̂] using a glo
bal reference point for the entire area.
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The second-tier network is designed to detect the 
remaining single PSs (SPSs) and all double PSs (DPSs). 
First, the SPSs identified in the first-tier network, 
referred to as reference SPSs, are removed from the 
SAR images. Secondary PS candidates (SPSCs) are 
then selected based on pure amplitude thresholding, 
due to their lower temporal stability in reflectivity. 
Each SPSC is connected to the nearest reference SPS, 
forming local star networks and eventually the entire 
second-tier network. Using the same process of 
beamforming, temporal unwrapping, relative para
meter estimation, and network adjustment, the abso
lute parameters of qualified SPSs are estimated.

Double PSs (DPSs) are identified using the local 
maximum ratio method. This ratio is calculated 
between the two largest local maxima in the NTM 
spectrum. If the ratio exceeds a specified threshold, 
the pixel is considered to contain DPS, and the corre
sponding parameters are estimated following the 
same flow for SPSCs.

2.2. Extraction of short-wavelength (detrended) 
signals

The LOS velocities obtained from Tomo-PSInSAR con
tain both long- and short-wavelength signals. The 
long-wavelength ground deformation primarily arises 
from tectonic movements and ground subsidence 
due to groundwater extraction. In contrast, deforma
tion associated with man-made structures is predo
minantly short-wavelength, typically spanning tens to 
hundreds of meters. To eliminate long-wavelength 
signals, a common approach is to fit the velocity 
field with a bilinear or biquadratic polynomial func
tion, which can also account for residual long-wave
length errors caused by imprecise orbit, tropospheric, 
or ionospheric noise (Simons and Rosen 2015). This 
approach, however, may not align with our goals, as 
previous InSAR studies of the Taipei Basin have 
revealed ground deformation patterns of intermedi
ate wavelengths, usually a few kilometers in scale, 
with local variations potentially linked to geological 
heterogeneity and groundwater extraction history 
(Lin 2022; Tung et al. 2016). To better address these 
ground-related signals, we devise the following pro
cedure to estimate and remove the long-wavelength 
signals.

We first divide the study area into 0.05°× 0.05° 
(about 5 km × 5 km) tiles and extend each tile by an 

additional 0.005° on all sides to create 0.01° overlap
ping regions with neighboring tiles. A third-order 
bilinear polynomial surface is fitted to the LOS displa
cement velocity on a tile-by-tile basis. These fitted 
surfaces are mosaicked together using a linearly 
weighted sum of neighboring tiles within the over
lapping regions. Finally, the composite long-wave
length signal mosaic is subtracted from the LOS 
velocities to isolate the desired short-wavelength 
(detrended) signals. The 0.05° tile size is chosen 
based on the following two criteria: the resulting 
mosaicked long-wavelength velocity field should 
look smooth, and the detrended velocity field should 
have zero mean and unskewed probability distribu
tion (see insets in Figure 6(c,d}). If the tile size is not 
appropriate, wide-area residual would appear; if the 
mosaicking process is flawed, zonal artifacts would 
occur. This detrending process may potentially intro
duce a minor velocity ramp to the data in some 
places, but it should not affect the subsequent SHM 
analysis significantly due to the gentle nature of the 
third-order polynomial over a 5 km × 5 km area.

2.3. Estimation of building settlement and tilt

To perform SAR-based SHM, we first determine the 
building to which each scatterer is associated. For this 
purpose, we utilize building footprints from the 
OpenStreetMap (OSM) Geofabrik repository, specifi
cally for the Taiwan region (http://download.geofab 
rik.de/asia/taiwan.html, last accessed in June 2024). 
After mapping scatterers to the corresponding build
ing polygons, we proceed to analyze two types of 
deformation: building settlement and tilt (see work
flow in Figure 3).

The information used for the analysis is the scat
terer’s linear velocity. The original Tomo-PSInSAR 
velocity values are in the LOS direction, representing 
a combination of both horizontal (primarily east-west) 
and vertical motions. Positive velocities indicate 
motion toward the satellite, which can correspond 
to either eastward or upward displacement, while 
negative velocities indicate motion away from the 
satellite, signifying either westward or downward 
displacement.

Building deformation, particularly tilt, involves 
both horizontal and vertical displacements. 
However, building tilt values are usually very small, 
mostly less than 1/1000, with values exceeding 1/40 
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indicating the need for demolition (Table 2) (Charles 
and Skinner 2004; Tu et al. 2011). In this regard, build
ing tilting rates should also encompass horizontal 
components 40–1000 times smaller than the vertical 
components. Therefore, we assume that the short- 
wavelength signals are dominated by vertical displa
cement and apply the following equation to convert 
the velocities from the LOS direction to vertical: 

Equation (6) is a simplified form of equation (5.1.1) in 
Hanssen (2001). It assumes that horizontal velocities 
(mainly the east component) have minimal contribu
tion to VLOS. In reality, it is possible that localized 
horizontal displacements, such as those near a pump
ing well (Burbey 2006), may exist in VLOS and be con
verted into VZ . Such ambiguity, however, should be 
limited in amplitude, given that groundwater extrac
tion has been prohibited since the early 1970s (Chen 
et al. 2007). Hence, any remnant, localized horizontal 
displacement caused by hydrodynamic lag effect (a 
delay in the propagation of fluid-pressure changes 

between the aquifers and aquitards) should have 
decayed with time (Galloway, Jones, and Ingebritsen  
1999). Another potential source of error arises from 
buildings undergoing permanent volumetric 
changes, such as concrete dilation and fractures, in 
which case the corresponding horizontal displace
ment might also be projected into VZ .

To ensure a more conservative and consistent ana
lysis, we select only buildings with at least six scat
terers (ns ≥6) for SHM analysis (Table 1). This threshold 
is determined through a series of tests with ns ≥4, 6, 8, 
and 10. The tests reveal that at larger ns values (6, 8, 
and 10), the number of eligible buildings decreases, 
while the number of resolvable deformation anoma
lies remains mostly similar. When ns is reduced to 4, 
the number of eligible buildings increases, but more 
unreliable (and large) anomalies occur due to a smal
ler number of points used in the SHM analysis. The 
value of ns ≥6 is therefore selected. This value should 
be reassessed when applying the SHM analysis 
approach to a different dataset.

To identify buildings suitable for vertical settle
ment analysis, we set the following criteria. First, the 

Figure 3. Flowchart of building settlement and tilt estimation.
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standard deviation of VZ among the points within a 
building polygon (σ�Vbldg

Z
) must be less than one stan

dard deviation below the mean velocity uncertainty 
of the entire MTInSAR dataset (�εV ), which gives a 
threshold of approximately 1.3 mm/yr in this case 
(~1.1 mm/yr in LOS, or 1.3 mm/yr in vertical direction; 
Table 5). This criterion ensures the robustness of 
homogeneous settlement. Second, we apply a con
servative negative velocity constraint, requiring that 

the building block’s mean �Vbldg
Z plus one standard 

deviation σ�Vbldg
Z 

remains less than zero. This criterion 

ensures the exclusion of blocks with predominantly 
positive VZ values. Third, we observe that in some 
cases, the scatterers may originate from only one 
corner of the building. To ensure that the analysis 
accurately represents the uniform settlement of the 
entire building, we limit the analysis to buildings 
where the scatterer distribution spans at least 33% 
of the X and Y dimensions of the building (Table 1). 
Sensitivity tests using scatterer spatial coverage cri
teria ranging from 10% to 90% indicate that the 

number of eligible buildings declines linearly with 
increasing thresholds, while the fraction of outliers 
(buildings with anomalous settlement) remains 
stable up to 33% but decreases linearly beyond this 
point. Based on these trends, 33% may represent a 
balance between retaining a sufficient number of 
eligible buildings for analysis and minimizing out
liers from scatterers with limited spatial coverage. 
We therefore set 33% as the criterion for settlement 
analysis.

We then calculate the mean VZ for each building 

(�Vbldg
Z ). To assess how factors such as soil properties 

and building ages influence building deformation, we 
further categorize the buildings by using soil proper
ties (such as the SPT-N values, see section 4.4) and 
then by building ages. Within each soil-age group, we 
apply the following criterion to identify buildings with 
outlier settlement rates: 

where Vgrp
z;Q1 and Vgrp

z;Q3 represent the first and third 
quartiles of the velocities within each group.

For tilt analysis, we fit the scatterer VZ values 
within each building block using the following 
equation: 

X and Y are the local Cartesian coordinates of the 
scatterers, while Z is represented by the elevation 
parameter (s) obtained through Tomo-PSInSAR pro
cessing (Equations 1–5). The first three terms of the 
equation describe a 3D plane, and the last term 
accounts for any covariance between VZ and Z. The 
underlying assumption is that building tilt behaves 
like a rigid block rotation along a horizontal axis, 
meaning that VZ depends on mainly X and Y . Any 
significant dependence of VZ on Z, as observed in 
some cases, is attributed to the tradeoff effect during 
the parameter estimation in (5).

Table 2. Required actions in Taiwan at different building tilt values (Tu et al. 2011) and long-term 
outcomes at different tile rates.

Tilt Required Action Tilt Rate [yr−1]
Long-term outcomes 
if the condition lasts

<1/200 Restoration (possible) 1/4000 Restoration in 20 years 
Reconstruction in 100 years

1/200–1/40 Restoration and reinforcement 1/2000 Restoration in 10 years 
Reconstruction in 50 years

>1/40 Demolition and reconstruction 1/1000 Restoration needed in 5 years 
Reconstruction in 25 years

Table 1. Criteria for buildings eligible for vertical settlement and 
titling analysis.

Vertical 
Settlement Tilting

Number of scatterers ns ≥6
σ�V bldg

Z 
[mm/yr] < �εV � σεV½ �

(<1.3)*
–

Negative velocity constraint �Vbldg
Z þ σ�Vbldg

Z

h i
< 0 �Vbldg

Z < 0

Spatial coverage of scatterers in X 
[% of building X dimension]

≥33 ≥50

Spatial coverage of scatterers in Y 
[% of building Y dimension]

≥33 ≥50

V Z RMSE in 3D plane fitting [mm/yr] – <�εV 
(<1.8)*

�V bldg
Z : mean V Z of all scatterers within the building block [mm/yr] 

σ�Vbldg
Z

: standard deviation of all scatterer V Z within the building block 
[mm/yr] 

�εV : mean V Z uncertainty of the entire MTInSAR dataset [mm/yr]. Refer to 
inset in Figure 6e 

σεV : standard deviation of V Z uncertainties [mm/yr]. Refer to inset in 
Figure 6e 

All values are converted from LOS to vertical using eq (6) 
*The values used in this study
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In the tilt analysis, as the scatterers’ velocities 
change within the same building polygon, we do 
not set any criterion based on the velocity standard 
deviation. Compared to settlement analysis, we apply 
a less conservative negative velocity constraint, 
requiring the building block’s mean velocity �Vbldg

Z to 
be less than zero (Table 1). This criterion allows some 
positive VZ values to account for instances where 
parts of the building may tilt upward during tilting. 
As tilt detection is more sensitive to the even distribu
tion of scatterers than settlement detection, a higher 
criterion for scatterer distribution is likely needed. 
Sensitivity tests again indicate that while the number 
of eligible buildings declines linearly with increasing 
thresholds, the fraction of tilt outliers remains stable 
up to 50% but decreases linearly beyond this point. 
We therefore set 50% as the criterion for tilt analysis. 
After screening buildings with this criterion, we 
further narrow down the tilt analysis eligibility using 
the following index: the root mean square error 
(RMSE) between the observed and fitted VZ values. 
Buildings with RMSE greater than the mean velocity 
uncertainty of the entire MTInSAR dataset �εV (1.5 mm/ 
yr in the LOS direction, or 1.8 mm/yr in the vertical 
direction; Table 5) are deemed to be of poor quality 
and are excluded from the analysis.

After fitting the building scatterer VZ using (8), we 
can compute the tangent of the angle between the 
plane normal vector np ¼ � c2; � c3; 1½ � and the vertical 
unit vector nz ¼ 0; 0; 1½ �. This is done by combining the 
vector cross-product equation ( np � nz

�
�

�
� ¼ np

�
�
�
�nzsinθ) 

and dot-product equation (np � nz ¼ np
�
�
�
�nzcosθ) into 

the following: 

where _α is the tilting rate, expressed in units of yr−1, 
indicating the rate of change in tilt per year. A tilting 
rate of 1/1000 indicates an increase of 1-m vertical 
difference per 1000 m of horizontal distance per year. 
After calculating the tilting rate for all buildings, we 
again categorize them into different soil-age groups 
and apply the following criterion to identify buildings 
with outlier tilting rates: 

where _αgrp
Q1 and _αgrp

Q3 represent the first and third quar
tiles of the tilting rate within each group.

3. Study area: Taipei Basin

The Taipei Basin is a half-graben formed during post- 
orogenic extension in northern Taiwan since 0.8 Ma 
(Teng et al. 2001). The reactivation of a former reverse 
fault into the Shanchiao fault caused the asymmetric 
subsidence of the Tertiary basement and subsequent 
deposition of Holocene alluvio-lacustrine sediments 
(Figure 4a). The topmost layer, the Holocene 
Sungshan formation (formed ~12 Ka), consists of 
alternating sand, silt, and muddy clay, reflecting envir
onmental variations driven by changes in sea level. 
These sediment layers generally thicken northwest
ward toward the Shanchiao fault, reaching a maxi
mum thickness of ~120 m just east of the fault. 
Conversely, toward the southeastern side of the 
basin, the layers gradually thin and taper off, with 
the Pleistocene or even Miocene basement reaching 
the surface (Lee et al. 2011; Wang et al. 2004). Within 
the top 30 m – a depth range for most construction 
activities – estuarine muddy clay transitions upward 
into fluvial sand and floodplain mud, deposited dur
ing the most recent sea-level regression (Chen et al.  
2008). The muddy clay in this depth range exhibits 
low mechanical strength, with a water content close 
to its liquid limit of 30% (Lee et al. 2011; Wang et al.  
2004). In terms of structural activities, borehole 
records indicate active extension during the early- 
mid Holocene, with episodic displacements of 2.3 to 
4.5 m along the fault, potentially causing earthquakes 
of magnitude 6.9 to 7.1 (Huang et al. 2007). Although 
these events may have a long recurrence interval of  
~5,000 years, other large earthquakes in Taiwan, like 
the Mw 7.6 Chi-Chi earthquake in 1999 and the Mw. 
7.3 Hualien earthquake in 2024, have also caused 
building damage in the basin due to site amplification 
effects from the soft sediments and the half-graben 
basin structure (Chan et al. 2020; Cheng et al. 2010; 
Fletcher and Wen 2005).

In addition to active faults, the Tatun Volcano, 
located on the northern edge of the Taipei Basin, 
poses potential threats (Figure 4a). The volcano’s last 
magmatic eruption occurred around 20 Ka, with a 
possible effusive eruption around 6 Ka (Belousov et 
al. 2010; Chen and Lin 2002). Recent seismic activities 
suggest ongoing volcanic processes, with several 
phreatic eruptions in the past decade (Lin 2017; Pu 
et al. 2020). The associated seismic hazards within the 
basin should not be underestimated
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Besides frequent seismic activities and shaking 
amplification effects in the basin, high summer tem
peratures (>30°C from June to September), an annual 
precipitation rate of ~2,370 mm/yr, and frequent 
typhoon visits can accelerate the premature dete
rioration of reinforced concrete structures by promot
ing chemical reactions (Auld, Klaassen, and Comer  
2006; Stewart, Wang, and Nguyen 2012). These reac
tions lead to steel bar corrosion, causing expansion 

and fractures in the surrounding concrete and ulti
mately reducing the bonding strength between the 
concrete and steel bars (Chiu, Tu, and Zhuang 2016; 
Lee and Cho 2009). This loss of mechanical strength 
makes many older structures in the basin increasingly 
susceptible to deformation under load and vulnerable 
to failure during large earthquakes. Identifying these 
at-risk buildings becomes a necessary task for enhan
cing urban resilience.

Figure 4. Geology, building age, soil types, and urban regeneration plans of the Taipei Basin. (a) Geological features and earthquake 
records around the Taipei Basin. The black contour lines indicate the depth (in meters) of the Holocene Sungshan formation, the 
topmost layer in the basin composed of silt and mud (Wang et al. 2004). Among all three faults shown, only the Shanchiao fault is 
considered seismogenic (Shyu et al. 2020). Earthquake records span from 1991 to 2023 (data source: central weather administration 
Taiwan geophysical database management system, https://gdms.Cwa.gov.tw, last accessed in June 2024). ML denotes local magni
tude (refer to https://scweb.Cwa.gov.tw/en-us/page/intro/44 for more details; last accessed in April 2024). Blue and pink polygons 
outline the borders of the Taipei City and the New Taipei City, respectively. S101 marks the continuous GNSS station located on the 
roof top of institute of earth sciences building. (b) Building ages as of 2022. See section 4 for details about data sources. Inset: 
histogram of building ages. c. Mean (0–30 m) standard penetration test number (SPT-N) (data source: https://geotech.Gsmma.gov.tw/ 
imoeagis/Home/supply, last accessed in June 2024). Inset: distribution of SPT-N values. d. Planned and completed urban regeneration 
areas within the Taipei Basin as of 2022. See section 4 for the sources of data.
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4. Data

4.1. Synthetic aperture radar imagery

We use 27 TerraSAR-X (TSX) and 14 TanDEM-X (TDX) 
HH-polarization stripmap images (41 images in total) for 
the Tomo-PSInSAR analysis. A standard PSInSAR analy
sis (Hooper, Segall, and Zebker 2007) with the Shuttle 
Radar Topography Mission DEM (Farr et al. 2007) is also 
conducted in parallel using the same dataset for com
parison. The images are acquired on a descending path 
between 8 September 2017 and 1 December 2019 
(Figure 5a). The spatial resolution is 1.2 m in the slant 
range and 3.3 m in the azimuth direction. Table 3 pro
vides a summary of the image specifications. The base
line plot (Figure 5b) shows the distribution of spatial 
baselines, with a total perpendicular baseline span 
�B?, which serves as the aperture in the TomoSAR 
elevation direction, measuring 775.5 m.

4.2. Global navigation satellite system (GNSS) data

To validate the velocities obtained from SAR data, we 
use records from nine continuous GNSS ground sta
tions across the Taipei Basin (Figure 5a). These stations 
are selected based on the overlapping observation 
time span with the SAR dataset. The daily displacement 
time series were downloaded from the Taiwan 
Geodetic Model (TGM) website (https://tgm.earth. 

sinica.edu.tw/, last accessed in June 2024) and pro
jected to form the LOS displacement time-series for 
all stations. Since InSAR velocities are relative to a local 
reference point, we set the GNSS station S101 as a 
reference for both InSAR and GNSS observations. This 
station is situated on the rooftop of the Institute of 
Earth Sciences building in the eastern Taipei Basin, 
where the soft sediment layer is thin, and mid- 
Miocene sandstone lies close to the surface (National 
Geological Data Warehouse, https://geomap.gsmma. 
gov.tw, last accessed in December 2024) (Figure. 4a). 
Established on 1 January 1993, the station has oper
ated continuously for over 30 years. The mean LOS 
displacement velocity at S101 is estimated by fitting 
the displacement time-series with a linear term for 
velocity and sinusoidal terms (sines and cosines for 
the periods of one year and half year) for annual and 
semiannual variations (Nguyen et al. 2022). The mean 
LOS displacement velocity from S101 is then sub
tracted from the displacement time-series for all 
other GNSS stations.

To compare the InSAR LOS velocities with GNSS 
LOS velocities, we select an area within a 250-m radius 
of each GNSS station. The InSAR time-series for all 
scatterers within this radius are fitted using the same 
parameterized formula applied to the GNSS time-ser
ies. The mean InSAR velocities and standard 

Figure 5. SAR data used in this study. a. Footprint and LOS direction of the TSX and TDX imagery. The red and orange tiles indicate the 
areas used for the evaluating long-wavelength signals in the LOS velocities. Blue polygon: Taipei City. Pink polygon: new Taipei City. b. 
Baseline plot of the SAR images. The red cross represents the reference image from September 6, 2018. The total perpendicular 
baseline span ΔB? is 775.5 m. Black lines represent the processing network for PSInSAR.
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deviations are then calculated based on an ensemble 
of linear velocities.

4.3. Building age and urban regeneration data

For building ages in Taipei City, the dataset was made 
available on GitHub (https://github.com/imdataman/ 
taipei-house-age-map, last accessed in June 2024). It 
is created by comparing the address and age informa
tion in the Taipei City building construction license 
dataset (the latest online database available at 
https://data.gov.tw/dataset/128204., last accessed in 
Dec 2024) with the national address system (https:// 
luz.tcd.gov.tw/WEB/default.aspx, last accessed in June 
2024) to generate the coordinates for each building. 
This building age dataset was created in December 
2016. To account for the time difference with the SAR 
images, we added 3 years to all building ages, making 
it the youngest building age in Taipei City 4 years. For 
New Taipei City, the building age dataset is provided 
directly by the Land Administrator Department, New 
Taipei City Government, with the online version 
accessible via the i-Land system (https://i.land.ntpc. 
gov.tw/landsar/landsta/#, last accessed in June 
2024). The dataset represents the ages at the end of 
2022, so 3 years were subtracted from all building 
ages to align with the analysis time frame. Buildings 
with negative ages are then excluded. The overall age 
distribution of the buildings is shown in the inset of 
Figure 4b. As both age datasets are point-based 
(Figure 4b), to attribute age readings to individual 
buildings, the datasets are spatially overlaid with the 

OSM building polygons. If multiple points fall within 
the same polygon, their median value is assigned. 
Given location errors in both the age datasets and 
the building polygons, this process may lead to mis
attribution of points and building age errors.

For the urban regeneration dataset in Taipei City, 
the latest regeneration plan (2018) is available from the 
Taipei City Urban Regeneration Office (https://uro.gov. 
taipei/cp.aspx?n=3C7DB2F1081E962B, last accessed 
in June 2024). Completed areas are digitized directly 
from the Taipei City Urban Development Review 
Map (https://bim.udd.gov.taipei/UDDPlanMap, last 
accessed in June 2024) for cases completed between 
2001 and 2022. For New Taipei City, both the planned 
and completed areas are digitized from the New Taipei 
City Government Urban and Rural Information Inquiry 
Platform (https://urban.planning.ntpc.gov.tw/ 
NtpcURInfo/map.aspx, last accessed in June 2024) for 
the period between 2002 and 2022. The combined 
map is shown in Figure 4d. When evaluating the effi
cacy of applying SAR-based SHM for urban regenera
tion (section 5.4), buildings labeled as completed 
within the planned areas are excluded from the analy
sis. Due to the difference in time frame, buildings 
rebuilt between the last SAR acquisition (October 
2019) and the end of the urban regeneration dataset 
(2022) will be omitted from the analysis, causing 
potential undercounts.

4.4. Soil properties

More than 1,970 engineering wells were drilled within 
the Taipei Basin between 1992 and 2013 (Central 
Geological Survey 2020). According to Ministry of 
Interior regulations, N-values of standard penetration 
tests were obtained for the uppermost 30-m soil layer 
at 1.5-m depth intervals, following the guidelines of 
the Japanese Road Association (Japanese Road 
Association 1996). These N-values were then interpo
lated into grids with a resolution of 100 × 100 × 1 m 
down to a depth of 30 m. Figure 4c shows the mean 
N-values between 0 and 30 m (referred to as SPT-N in 
this study). This mean value is used to represent over
all soil conditions: SPT-N ≤ 4 for very loose soil, 4–10 
for loose soil, 10–30 for medium soil, 30–50 for dense 
soil, and >50 for very dense soil (Terzaghi, Peck, and 
Mesri 1996). For our subsequent analysis, we will 
further categorize the soil into two major types: SPT- 

Table 3. TerraSAR-X/TanDEM-X image specifications.
Wavelength λ [cm] 3.1
Polarization [-] HH
Incidence angle θ [deg] 33.2
Number of acquisitions N 41
Observation period [year] 2.23
Slant range between satellite and target R [km] 603.65
Total perpendicular baseline span ΔB? [m] 775.5
Standard deviation of the elevation aperture σB [m] 15.3
Max. resolvable elevation Δs [m]*1 934.0
Slant range resolution ρr [m] 1.2
Azimuth resolution ρx [m] 3.3
Elevation resolution ρs [m] *2 12.1
Elevation error σbs 

[m], SNR=10 dB*3 3.4
Elevation error σbs 

[m], SNR=5 dB*3 4.8

*1 Δs� ρr Rð Þ=ΔB? (Zhu and Bamler 2010b); it means the maximum scat
terer elevation above a given reference ground that SAR tomography is 
able to resolve. 

*2 ρs ¼ λR= 2ΔB?ð Þ (Zhu and Bamler 2010b). 
*3 σbs ¼ λR= 4π

ffiffiffi
N
p ffiffiffiffiffiffiffiffiffi

2SNR
p

σB
� �

according to Cramér-Rao lower bound (CRLB) 
(Zhu and Bamler 2010a).
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N ≤ 10 for very loose to loose soil, and SPT-N > 10 for 
medium to very dense soil.

5. Results and discussions

5.1. Comparison of LOS velocities between 
different InSAR methods

The LOS velocities obtained from Tomo-PSInSAR and 
PSInSAR are shown in Figure 6a & b. Table 4 provides 
the statistical comparison between the two methods. 
Tomo-PSInSAR extracts more than 3.2 million scat
terers, about doubling the 1.5 million points extracted 
by PSInSAR. This difference results in a higher point 
density for Tomo-PSInSAR (12,218 points/km2) com
pared to PSInsAR (5,835 points/km2). Both methods 
reveal a similar pattern, indicating that the Taipei 
Basin is experiencing asymmetric subsidence, with 
the western part subsiding at higher rates. This pattern 
is likely due to a combination of interseismic deforma
tion related to the active Shanchiao fault (C.-T. Chen et 
al. 2007) and ground subsidence caused by both elastic 
and anelastic ground deformation associated with 
groundwater changes (Wu et al. 2024). However, the 
Tomo-PSInSAR results show more negative velocities, 
with values reaching as low as −28.96 mm/yr com
pared to −9.89 mm/yr for PSInSAR (Figure 6a & b) 
(Table 4). This difference may be due to the removal 
of spatially correlated phases, particularly the long- 
wavelength residual phase from satellite orbit inac
curacies, in the PSInSAR processing using a spatial- 
temporal filter (Hooper, Segall, and Zebker 2007). The 
velocity values and patterns derived from PSInSAR in 
this study are comparable to those obtained using 
PSInSAR on Sentinel-1 SAR images over similar periods 
(Lin 2022). On the other hand, as orbital errors are not 
accounted for in Tomo-PSInSAR processing, the accu
racy of long-wavelength signals may require further 
improvement, such as by incorporating a spatial-tem
poral filtering approach during the processing.

The detrended velocity fields reveal differences at 
local scales (Figure 6c-d). The Tomo-PSInSAR velocity 
map shows small patches with distinct negative LOS 
displacement velocity anomalies, with values as low 
as −18.22 mm/yr, while the PSInSAR result displays a 
smoother velocity field, with negative velocities lim
ited to −5.99 mm/yr (Table 4). A close-up view of 
these anomalies (Figure 7) shows that Tomo- 
PSInSAR points are better aligned with the outline of 

manmade structures, whereas PSInSAR points are 
scattered. Additionally, Tomo-PSInSAR points show 
larger velocity anomalies clustered around specific 
buildings, while PSInSAR points display little to no 
anomalies. The better alignment of Tomo-PSInSAR 
points with building edges and the clustering of 
anomalies around certain buildings suggest that 
Tomo-PSInSAR is more effective in providing realistic 
estimates of building deformation.

In terms of the uncertainties, both methods exhibit 
increasing velocity standard deviations toward the 
west (Figure 6e & f). Tomo-PSInSAR generally shows 
larger uncertainties, with a mean VLOS standard devia
tion of 1.52 mm/yr compared to 1.43 mm/yr for 
PSInSAR (Table 4). When validating against GNSS dis
placement time-series, the original (undetrended) 
InSAR LOS displacement time series from both meth
ods are comparable, with slightly larger variations 
than the GNSS time-series due to residual APS effects 
(Figure 8). The root mean square difference (RMSD) 
and mean absolute error (MAE) between the Tomo- 
PSInSAR VLOS and GNSS VLOS are 1.73 and 1.39 mm/yr, 
respectively, with a mean standard deviation of 
1.13 mm/yr across all GNSS stations. For PSInSAR, 
the RMSD, MAE, and standard deviation are 1.99, 
1.38, and 0.96 mm/yr, respectively (Table 4).

Given the large number of scatterers retrieved, the 
precision in their 3D positions, and comparable uncer
tainty levels with PSInSAR, Tomo-PSInSAR appears to 
be a suitable tool for studying deformation at the 
building level. However, the method has several lim
itations. First, it has strict requirements regarding the 
spatial baseline distribution (Table 3). The total base
line span must be sufficiently large, and the baselines 
of individual passes should be relatively evenly dis
tributed within this range to ensure high-quality 
tomographic results. Many repeat-pass SAR satellites 
with global coverages, such as Sentinel-1, have nar
row orbital tubes or uneven baseline distributions, 
which do not meet these requirements. Second, the 
slant-range resolution needs to be fine enough to 
allow the retrieval of a greater number of scatterers. 
At coarse spatial resolution, even if the threshold for 
the normalized tomographic magnitude is lowered to 
resolve more scatterers within a single pixel, the num
ber of retrieved scatterers remains significantly lower 
compared to those obtained from high or ultra-high 
resolution SAR images. These two limitations largely 
restrict tomographic applications to high- 
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Figure 6. Comparison between tomo-PSInSAR and PSInSAR results.a-b. Original LOS velocities relative to GNSS station S101. c-d. 
Detrended LOS velocities (with long-wavelength signals removed). See Figure 8 for zoomed-in views of location a to d and and Figure 
13 for tilt validation at location e. Inset: distribution of detrended LOS velocities. e-f. LOS displacement velocity standard deviation. The 
thick red line marks the active Shanchiao fault, with thin ticks indicating the down-thrown side of the crustal block (hanging wall). 
Inset: distribution of LOS displacement velocity standard deviation. Red line indicates the mean value. Blue polygon: Taipei City. Pink 
polygon: new Taipei City.
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performance X-band SAR satellites. These satellites, 
unless specifically tasked, usually focus image acquisi
tions on large cities outside their home countries, 
further limiting the geographical applicability of 
Tomo-PSInSAR.

Finally, as discussed earlier, long-wavelength errors 
possibly caused by orbital uncertainties exist in the 
current Tomo-PSInSAR results. Efforts such as incor
porating orbital error estimation (Chen, Peng, and 
Yang 2017; Zhang et al. 2014) in the Tomo-PSInSAR 
network adjustment (Figure 2), or conducting orbital 
error isolation by using multispectral wavelet analysis 
or independent component analysis (Hu et al. 2022) 
during the post-processing stage will further improve 
the robustness of the Tomo-PSInSAR results.

5.2. SAR-based SHM in Taipei basin

Based on the criteria set for building SHM analysis 
(Table 1), a total of 9,816 buildings are eligible for the 
analysis, representing 11.6% of all building polygons 
(Table 5). When separating them by soil types (SPT- 
N ≤ 10 and SPT-N > 10), although the number of 
buildings in the two groups is different by only 
11.4% (51.7% vs. 40.3%), the number of eligible 
buildings is different by 44% (72% vs. 28%) (Table 
5; Figure 9). Such a bias in proportion is also seen in 
the settlement and tilt analysis, respectively. We will 
discuss possible explanations of this bias in Section 
5.4. Of all eligible buildings, only 56% (5,491) contain 
age information. The following analysis is conducted 
on buildings with both SPT-N values and building 
ages.

For settlement analysis, the buildings are grouped 
by 2 soil types and 14 age groups between 4 and 110  
years. Younger buildings (within 20 years) are 
grouped in approximately 5-year intervals, as building 
load tends to induce greater soil consolidation and 
more variable ground deformation during this period 
(Ciampalini et al. 2019; van der Horst et al. 2018). 
Beyond age 20, buildings are grouped evenly in 10- 
year intervals up to 110 years. In both soil types, the 
box plot shows that the younger age groups (4 and 6  
years) exhibit higher settlement rates and greater 
variation compared to older age groups. This pattern 

Table 4. Comparison between Tomo-PSInSAR and PSInSAR 
results.

Tomo- 
PSInSAR PSInSAR

Number of points extracted 3,265,579 1,559,577
Point density [pt/km2] 12,218 5835
Lower-tail V LOS , original velocity field [mm/yr]* −29.96 −9.89
Lower-tail V LOS , detrended velocity  

field [mm/yr]*
−18.22 −5.99

V LOS uncertainties [mm/yr] 1.52±0.42 1.43±0.35
RMSD between original V LOS and GNSS V LOS 

[mm/yr]
1.73 1.99

MAE between original  
V LOS and GNSS V LOS [mm/yr]

1.39 1.38

Mean V LOS standard deviation at GNSS sites 
[mm/yr]

1.13 0.96

*To avoid reporting outliers, the value is read from the 0.01% quantile of the 
entire dataset.

Figure 7. Close-up comparison of tomo-PSInSAR and PSInSAR detrended velocities at selected sites (see Figure 6c for location). 
Background image source: Google earth. Imagery date: August 31, 2019.
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reflects soil compaction due to the loading effects of 
newly constructed buildings (Figure 10a and 10c). 
Except for certain soil-age groups with limited 

building samples (e.g. age group 80 in SPT-N ≤ 10), 
the mean settlement rates generally decrease with 
building age (blue boxes in Figure 10a & c). This 

Figure 8. LOS displacement time-series from tomo-PSInsAR, PSInSAR, and GNSS measurements. All time-series are re-referenced 
(flattened) using the linear velocity obtained at GNSS station S101. Both InSAR time series are presented without detrending.

Table 5. Statistics for building settlement and tilt analysis.
Settlement Tilt Together

(A) Number of all building polygons 84,759
(A1) SPT-N≤10 [A1/A] 43801 [51.7%]
(A2) SPT-N>10 [A2/A] 34140 [40.3%]
(A3) No SPT-N value 6818 [8.0%]
(B) Number of eligible buildings 

for analysis* [B/A]
7,474 [8.8%] 6,601 [7.8%] 9,816 [11.6%]

(B1) SPT-N≤10 [B1/B] 5,340 [71.4%] 5,186 [78.6%] 7,064 [72.0%]
(B2) SPT-N>10 [B2/B] 2,134 [28.6%] 1,415 [21.4%] 2,752 [28.0%]
(C) Number of eligible buildings 

with age information [C/B]
4,199 [56.2%] 3,638 [55.1%] 5,491 [55.9%]

(C1) SPT-N≤10 [C1/C] 3,117 [74.2%] 3,048 [83.8%]
(C2) SPT-N>10 [C2/C] 1,082 [25.8%] 590 [16.2%]
(D) Number of outliers according to 

statistics in each age group
256 279 517 (1,058)†

(D1) SPT-N≤10 [D1/D] 185 [72.3%] 236 [84.6%]
(D2) SPT-N>10 [D2/D] 71 [27.7%] 43 [15.4%]
(E) Outlier fraction (D)/(C) 6.1% 7.7% 9.4% (10.8%)†
(E1) SPT-N≤10 (D1)/(C1) 5.9% 7.7%
(E2) SPT-N>10 (D2)/(C2) 6.6% 7.3%

*Using criteria set in Table 1. Buildings in areas without SPT-N values are excluded. 
†Values in parentheses indicate data after including buildings without age information. Outliers are identified based 

on the mean and standard deviation value of all samples.
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trend aligns with the stabilization of soil compaction 
observed in other cities (van der Horst et al. 2018; 
Yang et al. 2018). The number of outliers (defined in 
Equation (7)) is 185 in the SPT-N ≤ 10 group and 71 in 
the SPT-N > 10 group, accounting for 5.9% and 6.6% 
of buildings in these groups, respectively (Table 5).

When we further break down the outlier fractions 
by age groups (Figure 10b & d), a slight increasing 
trend is observed up to age group 60. Excluding the 
high outlier fraction in age group 110 within the SPT- 
N > 10 group, which is likely due to its limited sample 
size, the highest outlier fraction appears in age group 
40 for both soil types. Cases with large settlement 
rates, peaking at around −14 mm/yr, mostly occur in 
the age groups of 40 and 50. We perform a series of 
multivariable linear regression analyses on settlement 
rates, using age and SPT-N values as predictor vari
ables. The results indicate that for all eligible build
ings, the settlement rate decreases at a significant 
level with increasing age and SPT-N values, possibly 
reflecting the general soil consolidation trend (model 
A, Table 6). However, when analyzing only outlier 
settlement rates, neither the model nor the individual 
variables reach statistical significance (model B). 
Further examination of outlier fractions and maxi
mum outlier rates by groups among buildings aged 
less than 50 years (where more samples are concen
trated) reveals that large outlier settlement rates, 
represented by the 90th quantile in each age-SPT-N 
group, increase with building age at a significant level 

(model D), different from the general soil consolida
tion trend. Meanwhile, outlier fractions also increase 
slightly with age (model C). The SPT-N values do not 
emerge as significant predictors in outlier-related 
regression models, even when we categorized into 
smaller interval groups. These findings suggest that 
older buildings may exhibit higher outlier fractions 
and greater anomalous settlement, but the overall 
outlier settlement rates are likely influenced by addi
tional unmodeled factors, such as building materials, 
foundation types, and micro-topography or geology.

Figure 10e &amp; 10f present an example of a 
building with a settlement rate of −7.3 ± 0.2 mm/yr. 
The tilting rate of this building, 1/23,837 per year, is 
well below the average of 1/13,983 per year for the 
SPT-N<10 group, indicating that the building is 
experiencing relatively uniform sinking.

For building tilt analysis, a total of 6,601 buildings 
(7.8% of the OSM building polygons) meet the criteria 
in Table 1, among which only 3,638 buildings contain 
both age and soil property information. Compared to 
vertical settlement, which has an overall outlier fraction 
of 6.1%, tilting demonstrates a slightly higher fraction 
of 7.7% (Table 5). Given the larger number of samples 
in the SPT-N ≤ 10 group (3,048), there are also more 
outliers (236), compared to 590 samples and 43 outliers 
in the SPT-N > 10 level. Proportionally, both soil types 
have a similar fraction of outliers (7.7% vs. 7.3%). When 
further breaking down by age groups, age groups 6 to 
60 in SPT-N ≤ 10 have outlier fractions between 8% and 

Figure 9. Distribution of buildings eligible for (a) settlement and (b) tilt analysis, categorized by soil types. Blue polygon: Taipei City. 
Pink polygon: new Taipei City.
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10% (Figure 11b), with a high fraction for age group 80 
due its limited sample size. Most of the large tilt 
anomalies occur in the 30 to 50 age groups (Figure 
11a), with the peak tilting rate reaching 1/760 yr−1. In 
the SPT-N > 10 group, age groups 15 to 60 have outlier 
fractions between 5% and 12%, with a high fraction for 
age group 100 due its limited sample size (Figure 11d). 
The youngest age group (4 years) exhibits high outlier 
fractions for both soil types, with some showing large 
tilting anomalies (Figure 11a). These elevated fractions 
and anomaly values may again be attributed to uneven 
soil compaction caused by newly constructed 
buildings.

Multivariable linear regression analyses reveal that, 
among all eligible buildings, tilting rates increase with 
age at a significant level but decrease with SPT-N 
values (model A, Table 6). However, for individual 
outlier tilting values, no significant linear relationship 
is observed with either variables (model B). When 
analyzed by groups among buildings aged less than 
50 years, outlier fractions are not explained by age or 
SPT-N values either (model C). In contrast, maximum 
outlier tilting rates decrease with increasing SPT-N 
values but do not vary with age at a statistically sig
nificant level (model D). These findings suggest that 
while soil properties can partially explain variations in 

Figure 10. Boxplot statistics and example of building settlement rates across different soil-age groups. a-b. Statistics of building 
settlement rates and building counts for soils with SPT-N≤10. Outliers are defined based on Equation (7). c-d. Statistics for buildings on 
soils with SPT-N>10. e-f. Example of a building with a high settlement rate. The open white boxes in e indicate the positions of the 
tomo-PSInSAR scatterers. The white circles in f represent the scatterer vertical velocities, with vertical bars showing the velocity 
standard deviation. The surface is the best-fit 3D plane using Equation (8). Source of the 3D building model: https://github.com/ 
ronnywang/taipei-3d-building (last accessed in August 2022). Note that the appearance of the buildings has been modified for de- 
identification.
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the maximum outlier tilting rates, additional factors 
are needed to account for the variability in overall 
outlier tilting rates and outlier fractions, consistent 
with the settlement analysis results.

One of the unmodeled factors could be the type 
or quality of building materials. The age groups 
30–40, which exhibits high-rate outlier settlements 
or tilts, correspond to the period when a signifi
cant number of reinforced concrete buildings in 
Taiwan were constructed using sea sands, due to 
a shortage of river sands in the 1980s and 1990s 
(Lin et al. 1996). Based on the volume of sea sand 
extracted during that period, it is estimated that as 
many as 300,000–500,000 households, or approxi
mately 15,000–25,000 buildings, in Taiwan may 
contain sea sand (Wang 2005). The extraordinarily 
high chloride content in sea sand can accelerate 
chloride-induced corrosion on the steel bar, lead
ing to an increase in expansive stress within the 
surrounding concrete and the formation of cracks 
(Chiu, Tu, and Zhuang 2016; Lee and Cho 2009; Liu 
et al. 2020). This process usually degrades the 
performance of the reinforced concrete in a non
linear and progressive manner (Ohtsu 2003; Weng  
2016). Unfortunately, most of these sea sand build
ings (or high chloride ion buildings) remain 

undocumented, untracked, and excluded from gov
ernment-led urban regeneration plans (Lin 2019). 
Affected property owners are often reluctant to 
conduct chloride testing or structural assessments 
due to the concerns about potential impacts on 
real estate values (Lin 2019). In Section 5.5 we will 
discuss how SAR-based SHM analysis can be uti
lized to manage these vulnerable buildings.

Figure 11e,f present an example with a tilting 
rate of 1/1412 yr-1. The 14 scatterers associated 
with this building are distributed across different 
parts of the structure, indicating a relatively reli
able assessment. At this tilting rate, the building’s 
tilt will increase by ~1/200 over the next 7 years, 
and the tilt will become visually noticeable. Within 
10 years, the increased tile will reach 1/100, at 
which point remedial action will likely be required 
(Charles and Skinner 2004). Figure 11 g & 11 h 
showcase the building with the largest number of 
scatterers, around 770 points in total. Most of the 
points come from the northeastern and southeast
ern facets of the twin buildings with many dihedral 
surfaces formed between window eaves, balcony 
structures, and the walls. The tilting rate is 1/ 
35,813 per year, meaning that this young building 
(4 years) is very stable.

Table 6. Coefficients and p-values of multivariable linear regression models for settlement and tilting.
Settlementa Tiltingb

Coeff. p-value Coeff. p-value

(A) Rate = β0 + β1 Age + β2 SPT-N, All Eligible Buildings
β1 −0.004 3.8e-4* −223.6 0.02*
β2 −0.015 2.5e-7* 938.7 3.7e-4*
Model p-valuec 1.9e-8* 6.6e-5*
No. of Samples 4,199 3,638

(B) Rate = β0 + β1 Age + β2 SPT-N, Outliers Only
β1 −0.02 0.09 62.2 0.59
β2 −0.02 0.41 83.0 0.83
Model p-valuec 0.15 0.85
No. of Samples 256 279

(C) Outlier Fraction = β0 + β1 Age + β2 SPT-N, using 7 Age Groups (4–50 years) and 2 SPT-N Groupsd

β1 9.0e-4 0.01* −7.8e-4 0.32
β2 1.4e-4 0.86 6.5e-4 0.73
Model p-valuec 0.03* 0.56
No. of Samples 14 14

(D) Large Outlier Rate = β0 + β1 Age + β2 SPT-N, using 7 Age Groups (4–50 years) and 2 SPT-N Groupse

β1 0.11 0.05* −17.3 0.54
β2 −0.21 0.15 119.1 0.05*
Model p-valuec 0.09 0.11
No. of Samples 14 14

aSettlement rates are expressed as increasingly positively in the regression. 
bThe denominator of the tilting rate is used in the regression. A positive coefficient indicates the variable is inversely correlated with tilting. 
cCompared to a constant model. 
dThe mean SPT-N values are used to represent the SPT-N≤10 (mean=7.0) and SPT-N>10 (mean=19.4) groups. 
eThe 90% quantile value at each age-SPT-N group is used to represent the large outlier rates. 
*Significant at an alpha level of 5%.
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Figure 11. Boxplot statistics and example of building tilting rates at different age groups. a-b. Statistics of building tilting rates and 
building counts for soils with SPT-N<10. Outliers are defined based on equation (10). c-d. Statistics for buildings on soils with SPT-N >  
10. e-f. Example of a building with a high tilting rate. The open white boxes in e indicate the positions of the Tomo-PSInSAR scatterers, 
while the white circles in f represent the vertical velocities of the scatterers. The surface is the best-fit 3D plane using equation (8). 
Source of the 3D building model: google earth (last accessed in May 2024). Note that the appearance of the buildings has 42 been 
modified for de-identification. g-h. The building with the largest number of scatterers (770). The building age is 4 years. Source of the 
3D building model: google earth (last accessed in May 2024).
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5.3. SAR-based SHM validation and field 
observation

Validating the settlement and tilt analysis through in- 
situ measurements is challenging. Even if we had 
planned to install monitoring equipment in advance, 
most private property owners – particularly those 
with potentially problematic buildings – are reluctant 
to grant permission. Unfortunately, the outliers iden
tified in our results are primarily private properties. An 
alternative approach could involve installing monitor
ing devices (possible for both GNSS stations and tilt
meters) on selected government-owned buildings. 
Ideally, these buildings would be evenly distributed 
across age groups and geographical locations. Once 
established, they could serve as benchmarks for vali
dating future SAR-based SHM analyses. However, in 
the absence of such datasets, we need to seek alter
natives to verify the occurrence of building 
deformation.

We first conducted a field survey to investigate 
buildings identified with large settlement or tilting 
anomalies. This survey was carried out in 2024 due 
to logistical reasons, and hence the time gap limits 
the scope for rigorous validation. The process and 
findings, however, can still serve as a reference for 
future studies or urban management practices.

For survey efficiency, we screened and identi
fied buildings (both with and without ages) that 
met the following criteria: a settlement rate faster 
than −3 mm/yr or a tilt rate faster than 1/2000  
yr−1. Although empirically determined, this thresh
old enhances the likelihood of observing anoma
lous building tilt in the field, given that most 
concrete buildings in Taiwan have a designed life
span of approximately 50 years and may be recon
structed afterward (Lee 2015) (Table 2). A total of 
679 buildings met these two criteria. We grouped 
nearby anomalies into the same area, and selected 
15 areas (including Dazhi) containing buildings 
with either clustered or unusually large anomalies. 
These areas are also chosen to be evenly distrib
uted within the basin. In total, the 15 areas con
tain 60 buildings, comprising 20 with settlement 
and 40 with tilt anomalies (Table 7). At each build
ing, we inspected visible signs of deformation, 
such as wall cracks, column cracks, exposed 
rebar, tilting relative to neighboring buildings, 
reinforcement measures, and evidence of 

rebuilding (Figure 12). Additionally, we examined 
the surrounding area for construction sites or 
newly-built steel structures.

Table 7 summarizes the survey results. Among the 
20 buildings identified with vertical settlement 
anomalies, 40% exhibited signs of deformation, 50% 
showed no clear visual signs, and 10% has uncertain 
signs (e.g. minor cracks) or measurement errors (e.g. 
polygon errors). Of the 40 buildings with tilt anoma
lies, 55% exhibited signs of deformation, 32.5% 
showed no clear signs, and 12.5% displayed uncertain 
signs or measurement errors. Based on the statistics, 
building with tilting anomalies tends to provide more 
visual deformation signs than settlement anomalies. 
Overall, about 50% of the 60 buildings show some 
form of deformation or damage. While most buildings 
exhibited only one or two signs, the most severe case 
displayed up to 4 signs at the same time. Four of the 
15 areas contained construction sites or newly-built 
steel structures, with three of these areas showing 
deformation in the surrounding buildings. Twenty- 
three buildings (38.3%) showed no signs of deforma
tion, and 7 buildings (11.7%) exhibited uncertain 
signs, such as very fine cracks, or measurement errors 
related to the building polygon.

Our results indicate that the number of visible signs 
does not correlate with the magnitude of anomalies. 
For instance, the tilting rate of the building showing 
four signs is measured at 1/1,328 yr−1, representing 
only an intermediate value among all the cases inves
tigated. On the other hand, several buildings with 
larger tilting rates exhibit only one or zero signs. 
This result is understandable, as the absence or 

Table 7. Field observation statistics of buildings identified with 
large settlement or tilting anomalies.

Vertical 
Settlement* Tilting* Together

Number of area 15
(A) Number of Samples 20 40 60
(B) Showing signs of deformation 

[B/A]
8 [40.0%] 22 [55.0%] 30 [50.0%]

(B1) Wall cracks [B1/B] 3 [37.5%] 12 [54.5%] 15 [50.0%]
(B2) Column cracks [B2/B] 1 [12.5%] 3 [13.6%] 4 [12.5%]
(B3) Rebar exposed [B3/B] 0 [0.0%] 3 [13.6%] 3 [10.0%]
(B4) Tilting [B4/B] 3 [37.5%] 8 [36.4%] 11 [36.7%]
(B5) Reinforcement [B5/B] 1 [12.5%] 1 [4.5%] 2 [6.7%]
(B6) Rebuild [B6/B] 0 [0.0%] 2 [9.1%] 2 [6.7%]

(C) No visual sign of deformation  
[C/A]

10 [50.0%] 13 [32.5%] 23 [38.3%]

(D) Uncertain signs or errors [D/A] 2 [10.0%] 5 [12.5%] 7 [11.7%]

*Samples are selected using the following two criteria. 
Vertical settlement rate < −3 mm/yr, or tilt rate > 1/2000 yr−1
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scarcity of visible deformation signs does not neces
sarily indicate a building free from any deformation. 
Buildings with strong structural integrity but weak 
foundations may appear visually intact despite under
going subsidence or tilting. Such buildings may not 
require immediate remediation or retrofitting, as they 
might not face the same risk of collapse as those 
exhibiting multiple visible deformation signs. 
Therefore, management practices should prioritize 
buildings showing both deformation anomalies dur
ing SHM analysis and visual deformation signs during 
field surveys.

In addition to the field survey, we also obtain 
photos of buildings undergoing tilting restoration. 
One of these cases had restoration work done after 
the SAR sensing period, making it suitable for validat
ing the occurrence of building tilt during the SAR 
acquisition period (July 2017 to October 2019) 
(Figure 13). The SAR-based SHM results indicate that 
the building on the left was tilting at a rate of 1/5,360 
per year, while the building on the right remained 
relatively stable, tilting at a rate of 1/16,023 per year.

Finally, an unexpected chance of validation 
occurred on the evening of 7 September 2023, 
when an apartment in Dazhi, northern Taipei Basin 

(site E in Figure 6c) suddenly sank, turning the 
first floor into a basement (see news reports at 
https://www.taiwannews.com.tw/news/4993156 and 
https://focustaiwan.tw/society/202404290018, last 
accessed in May 2024). Several nearby buildings 
also exhibited varying degrees of tilting, sinking, 
and cracking. Investigations revealed that the inci
dent was caused by the improper design of the 
foundation’s diaphragm wall associated with a 
nearby construction site that began in 2022 
(https ://www.taipeit imes.com/News/taiwan/ 
archives/2024/05/07/2003817503, last accessed in 
May 2024). However, previous study indicates that 
various types of building deformation had already 
occurred before 2022 (see Figure 6 in S.-Y. Lin (2022) 
for field photos). The high concentration of building 
deformation in this area is believed to be related to 
the extra-soft sediment from the preexisting Dadu 
Lake located at this site (S.-Y. Lin 2022).

The Tomo-PSInSAR results reveal an oval zone with the 
largest vertical velocities in the center, reaching <-10 mm/ 
yr (Figure 14). Buildings in this area exhibit severe sinking 
in the center part and tilting in the periphery. According to 
this pattern, the coexistence of severe central settlement 
and peripheral tilting can serve as a strong warning sign 

Figure 12. Examples of building deformation signs observed in the field. a. Building with vertical wall cracks. b. Building with 
horizontal wall cracks. c-d. Buildings with column cracks. e. Building tilting towards next building. f. Building tilting away from next 
building. g. Building showing exposed rebar and column crack. h. Building with reinforcement.

GISCIENCE & REMOTE SENSING 23

https://www.taiwannews.com.tw/news/4993156
https://focustaiwan.tw/society/202404290018
https://www.taipeitimes.com/News/taiwan/archives/2024/05/07/2003817503
https://www.taipeitimes.com/News/taiwan/archives/2024/05/07/2003817503


for clusters of potentially problematic buildings. Such 
patterns can be detected automatically or semi-automa
tically through hotspot analysis techniques, such as the 
Getis-Ord Gi* statistic (Getis and Ord 1992) or the kernel 
density estimation (Chainey, Tompson, and Uhlig 2008). 
Preventive and targeted measures can then be imple
mented more effectively to mitigate further damages, 
particularly when there are going to be new construction 
projects in the area.

5.4. Overall assessment of applying SAR-based 
SHM to urban planning

A key objective of this work is to evaluate the effec
tiveness of Tomo-PSInSAR in supporting decision- 
making during urban planning. Section 5.2 reveals 

that only 11.6% (9,816 buildings) of the OSM building 
blocks qualify for SAR-based SHM analysis. By incor
porating buildings without age information into the 
analysis, using the means and standard deviations of 
all eligible samples in Equation (7) and (10), the total 
number of anomalies increases to 1,058 buildings, 
accounting for 10.8% of the eligible buildings. Now 
we compute the same statistics for the buildings 
within current regeneration plans. These plans cover 
a total of 9,911 buildings (Figure 4d), of which 9.4% 
(930 buildings) meet the criteria for SHM analysis 
(Table 8). Of these, about 11.9% (111 buildings) are 
identified as having deformation anomalies – a pro
portion slightly higher than that of the entire dataset 
(10.8%). While the number of buildings showing 

Figure 13. Example of building tilt validation. a. Map view of the validation site with building polygons color-coded according to 
tilting rates. The yellow arrow indicates the viewing direction of the photos in b and c. b. photo of the two buildings before tilting 
restoration. c. Photo of the two buildings after tilting restoration, completed in 2021. Note that the appearance of the buildings has 
been modified for de-identification.

24 Y.-C. CHEN ET AL.



deformation anomalies seems manageable from a 
practical perspective, it is based on a relatively small 
number of eligible buildings. If the proportion of 
eligible buildings increases, the number of outlier 
buildings may become difficult to manage. To address 
this point, two considerations emerge for SAR-based 
SHM analysis:

(1) In practice, the criteria for defining outliers in 
Equation (7) and (10) could be adjusted to ele
vate the threshold and reduce the fraction of 
outliers.

(2) The primary bottleneck is the low proportion of 
buildings eligible for the analysis, which needs 
to be addressed to improve scalability.

There are several factors related to the second point.
To begin, we examine the number of scatterers in 

each polygon. Figure 15a shows that only 41% of 
building polygons contain 6 or more scatterer points, 
while 29% of the polygons lack any. When analyzed in 
relation to building orientation angles, we figure that 
buildings with zero scatterer point are more likely 
oriented with their long axis pointing to the northeast 
(15°–75°) or southeast (135°–165°), with their within- 
group proportions all larger than 33% (Table 9) 
(Figure 16). In contrast, buildings orienting east– 
west (75°–105°) tend to have the lowest within 
group proportion of buildings with zero scatterer 
(22%) and the highest proportion of buildings with 
at least 6 scatterers (48.5%) and 10 scatterers (35%). 
Building orientation may also be the cause for the 
disproportionally lower number of eligible buildings 
in the SPT-N > 10 group (Table 5). The SPT-N > 10 soil 
group, mostly located within the New Taipei City 
(Figure 9), has a lower proportion of buildings 
oriented in the east–west direction compared to the 
SPT-N ≤ 10 group (26% vs. 41%, Figure 16d & 16c). All 
these lines of evidence suggest that building 

Figure 14. Building settlement and tilt in Dazhi, northern Taipei Basin. Note that the SAR images used in this study is acquired 
between July 2017 and October 2019, well before the incident on September 7, 2023. Refer to point E in Figure 6c for the site location. 
a. Building settlement. b. Building tilt. Open polygons indicate buildings not eligible for analysis.

Table 8. Statistics for applying SAR-based SHM to urban 
planning.

Settlement Tilt Together

(A) Number of buildings in urban 
regeneration plans*1

9,911

(B) Number of eligible buildings 
for analysis*b [B/A]

726 [7.3%] 575 [5.8%] 930 [9.4%]

(B1) With age information  
[B1/B]

386 [53.2%] 312 [54.3] 502 [54.0%]

(B2) Without age information 
[B2/B]

340 [46.8%] 263 [45.7] 428 [46.0%]

(C) Number of outliers [C/B] 48 [6.6%] 63 [11.0%] 111 [11.9%]
(C1) With age information  
[C1/B1]

27 [7.0%] 20 [6.4%] 47 [9.4%]

(C2) Without age information 
[C2/B2]

21 [6.2%] 43 [16.3%] 64 [15.0%]

aThe buildings in the planned but not in the completed urban regeneration 
polygons. 

bRefer to criteria set in Table 1.
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orientation angle contributes to the lack of scatterers 
for some buildings.

Next, we explore the 41% building polygons that 
contain at least six scatterers. Table 5 indicates that 
among the 41%, only 11.6% are eligible for the SHM 
analysis, while the remaining 29.4% fail to meet other 
criteria outlined in Table 1. A closer examination of 
the individual criteria reveals that the spatial coverage 
requirement accounts for 20% (or 49% of the build
ings with enough scatterers) of the exclusions, leaving 

9.4% of the polygons disqualified due to negative 
velocity constraints and RMSE in 3D plane fitting. 
This result highlights that an insufficient and uneven 
spatial distribution of scatterers within each building 
polygon is another key factor that limits the applica
tion of SAR-based SHM analysis.

The third factor is the low coverage rate of building 
polygons in the Taipei Basin. The OSM Geofabrik 
repository provides an areal coverage rate of only 
about 38% for the entire Taipei Basin (Herfort et al.  
2023), leaving 62% – or approximately 2.1 million – of 
the Tomo-PSInSAR scatterers unanalyzed (Figure 15b). 
Further analysis of the scatterer assignment status 
reveals that, among all factors contributing to missing 
assignments, absent polygons still account for 34–38% 
of all unanalyzed points (see Appendix A for scatterer 
assignment analysis) (Figure 15d). Additionally, the age 
coverage of urban building polygons is limited, with 
only 54% of the buildings having age information 
available (Figure 15c). While age information is not 

Table 9. Statistics for applying SAR-based SHM to urban 
planning.

Building 
Orientation Angle Group

Number of Scatterers 
Within Group Proportion [%]

0 1–5 6–9 ≥10

−15 ~ 15° 29.5 30.9 11.5 28.0
15 ~ 45° 33.9 27.9 10.8 27.3
45 ~ 75° 34.2 31.2 10.6 24.1
75 ~ 105° 22.3 29.2 13.3 35.2
105 ~ 135° 29.4 29.1 11.5 30.0
135 ~ 165° 37.1 31.5 10.4 20.9

Figure 15. Statistics of factors influencing the performance of sar-based SHM analysis for urban regeneration applications. a. 
Distribution of the number of tomo-PSInSAR scatterers per building polygon. b. Areal coverage of urban building polygons based 
on the OpenStreetMap dataset (Herfort et al. 2023). c. Age coverage over the urban building polygons. d. Scatterer assignment status 
(see appendix a for details).

26 Y.-C. CHEN ET AL.



strictly required for anomaly screening, it facilitates 
age-dependent analysis, which helps mitigate bias 
caused by soil compaction associated with newly-con
structed buildings.

The last factor involves geometric errors either in 
the buildings polygons or the scatterer locations. One 
issue is the overall shape and positioning of the poly
gons, which may be offset from their actual locations 
by a few meters and/or have inaccurate dimensions. 
Another issue is the level of details. OSM building 
polygons are typically simplified to rectangular 
shapes, whereas real building exteriors are often irre
gular, featuring protruding elements such as window 
frames, balconies, and shades. Meanwhile, the hori
zontal positioning bias and accuracy of scatterers 
have been reported at sub-meter (~18 cm) and 
meter level (1.2 m), respectively, based on multiview 
SAR tomography (Zhu et al. 2016). Since our study 
employs single-view tomography, we anticipate lar
ger positioning bias and errors. These errors, com
pounded by inaccuracies in the building polygons, 

result in unsuccessful assignment of approximately 
one-third of the building-related scatterers (15%/ 
(15%+37%) = 29%).

Based on the factors identified above, there are 
several methods that may further improve the perfor
mance. By increasing the number of scatterers per 
building and improving their spatial distribution and 
positioning accuracy, it would be beneficial to include 
SAR images from different viewing geometry when
ever possible. Given the limitation of the DLR science 
proposal, this study adopts SAR images from only the 
right-looking geometry in a descending pass. 
Expanding the dataset to include both ascending 
and descending passes, as well as left- and right- 
looking geometry, would help minimize the number 
of blind spots, as demonstrated in Zhu et al. (2016). 
While obtaining images from all four viewing geome
tries within a single mission may not always be fea
sible, integrating scatterers from multiple missions 
with similar sensing modes could be an efficient alter
native. For instance, 3-m stripmap images from 

Figure 16. Effects of building orientation angles on scatterer distribution. a. Distribution of building orientation angles in the OSM 
building polygon dataset within the Taipei Basin. The angles are measured as the clockwise deviation of the building’s long axis from 
due north. b. Within-group proportion of the number of scatterers across different building orientation angle groups. c. Same as 
subplot a for buildings with SPT-N≤10. d. Same as subplot a for buildings with SPT-N>10.
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TerraSAR-X (11-day repeat cycle, 450-m orbital tube), 
PAZ (11 days, 500 m), and COSMO-SkyMed (16 days, 1  
km) can offer compatible data for integration. 
Successful tomography requires consistent repeat 
orbit capabilities and controlled baseline dispersion 
levels, making most commercial small X-band satel
lites – such as ICEYE, Umbra, or Capella – less suitable 
for this purpose. Another potential approach is mer
ging missions with different radar frequencies but 
similar imaging modes, such as 3-m stripmap images 
from the C-band RADARSAT Constellation Mission or 
the L-band ALOS-2/4. However, frequency-dependent 
scattering mechanisms – such as sensitivity to bio
mass and water content – may introduce variations 
in the detection of scatterers, particularly non-build
ing-related ones, or their velocity estimates. 
Therefore, we recommend combining missions with 
the same radar frequencies, similar sensing modes, 
consistent repeat orbit capabilities, and controlled 
baseline dispersion to optimize multi-view tomo
graphic geometry for more reliable SHM analysis.

Increasing the number of acquisitions and ensuring 
a broader distribution of spatial baselines could also 
improve scatterer quality and increase the number of 
useful points. In this work, the total perpendicular base
line span (�B?) and baseline standard deviation (σB) 
are 775.5 m and 15.3 m, respectively, yielding a theore
tical and Cramér-Rao lower bound (CRLB) of elevation 
resolution at 12.1 m and 4.8 m (at SNR = 5 dB) (Table 3). 
More acquisitions at different geometry (larger �B?
and σB) may provide better elevation resolutions and 
stronger responses in normalized tomographic magni
tude (NTM) during the beamforming process, allowing 
more scatterers to be extracted. However, we caution 
that more frequent visits may lead to a smaller standard 
deviation of the elevation aperture if the spatial 
baseline dispersion remains fixed, thereby reducing 
elevation resolution according to the CRLB (Table 3) 
(Zhu and Bamler 2010a). For example, if TSX acquires 
images consistently at an 11-day interval throughout a 
year, the total number of images obtained would 
increase to 33, compared to the current acquisition 
density of 18.4 images per year (41 images over 2.23  
years). Consequently, the standard deviation of the 
elevation aperture σB would scale by a factor of 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18:4=33

p
¼ 0:74, decreasing to 11.3 m. This reduction 

would lead to a lower CRLB elevation resolution of 7.3  
m (at SNR = 5 dB). In this case, increasing the spatial 

baseline dispersion simultaneously would be necessary 
to ensure that the higher acquisition density would 
effectively improve tomographic performance.

Regarding the coverage and accuracy of urban 
building polygons and building ages, particularly for 
individual buildings that are difficult to distinguish 
from their neighbors in nadir-view optical images 
due to rooftop additions, the ideal approach is to 
use a well-validated dataset, preferably issued by 
government agencies. Efforts to obtain such datasets 
from public sector sources are not always successful, 
as was the case in this study. The challenges include 
(1) government officials being unaware of or uncer
tain about the technology and its deliverable results, 
and (2) different perceptions regarding the sensitivity 
level of personal data contained in the urban building 
polygons. To overcome these challenges, researchers 
must take a proactive approach in creating connec
tions with and gaining the trust of government offi
cials. This can be achieved through measures such as 
signing memoranda of understanding between gov
ernment agencies and research institutes, or involving 
more researchers in practical projects commissioned 
by government agencies. On the public sector’s side, 
adopting a pre-commitment strategy to define the 
type and scope of accessible data, along with imple
menting access control mechanisms, can serve as 
viable solutions to balance open data initiatives with 
privacy protection (Attard et al. 2015).

5.5. Management recommendations

Although the proportion of buildings eligible for SAR- 
based SHM analysis shown in this study is relatively 
low, the detection of anomalies in 48 buildings (with 
and without age information; Table 8) within the 
current urban regeneration plans provides a substan
tial foundation for government authorities to develop 
actionable plans. Below are some recommendations 
on how to integrate SAR-based SHM results into the 
management of high-risk buildings.

Based on the magnitude of detected anomalies 
within the current regeneration plans, urban man
agers can prioritize intervention orders, focusing on 
buildings with higher deformation rates and/or high 
residential occupancy. The next step involves field 
investigations to assess the building’s condition, as 
high anomaly values do not necessarily indicate poor 
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structural integrity, as seen in our field survey. Once 
verified as poor conditions in the field, SHM results 
combined with field observations can serve as com
pelling evidence to encourage property owners to 
undertake further inspection, such as chloride ion 
testing and in-situ SHM monitoring. The outcomes 
of these detailed assessments can then guide the 
decisions on rehabilitation, restoration, or 
reconstruction.

Specific spatial extent and clustering pattern of the 
anomalies may indicate potential threats to public 
safety. For example, the deformation pattern observed 
in the Dazhi case – characterized by peripheral tilting 
and severe central settlement in an oval-shaped zone – 
highlights a pattern requiring urgent attention. 
Preventive measures, such as implementing stricter con
struction regulations in nearby areas, can be deployed in 
advance to avoid causing more harm to already vulner
able buildings. Information on the affected area’s extent 
and the severity should be disclosed to local residents 
and the construction companies.

Last but not least, given the relatively low cost of 
SAR-based SHM in terms of time and labor, along with 
its wide spatial coverage and repeatability, the analy
sis can be conducted regularly to track the status of 
identified anomalies, especially those with high 
values but showing no visual signs of deformation. 
Long-term monitoring using a consistent method will 
help determine whether the signals are transient, with 
the deformation diminishing over time, or if the situa
tion deteriorates as deformation accumulates. The 
frequency of these analyses depends on the availabil
ity of high-resolution SAR images and their spatial 
baselines. A tradeoff exists between measurement 
accuracy and the temporal resolution: a longer obser
vation period increases the number of images and 
improves the spatial baseline distribution for SAR 
tomography, but it also lengthens the interval 
between analyses. To achieve a better balance, 
urban managers could task the satellite specifically – 
albeit at a higher cost – to increase the number of 
images within a one- or two-year period. More tests 
and experiences will be required to determine the 
best solution for all relevant parameters, both techni
cally and financially. Eventually, with a sufficient accu
mulation of time-series datasets, machine learning 
techniques can be applied for forward prediction, 
offering proactive insights for urban managers 
(Zhang et al. 2024).

6. Conclusions

By applying Tomo-PSInSAR on TerraSAR-X/TanDEM-X 
data for the Taipei Basin, this study demonstrates that 
Tomo-PSInSAR is a valuable technique for large-scale 
structural health monitoring (SHM). It achieves higher 
point density and more accurate point positions than 
the conventional 2D PSInSAR method. When attributed 
to building polygons, Tomo-PSInAR scatterer velocities 
can be used for deformation analysis, including build
ing settlement and tilt. Example in the Taipei metropo
litan area shows that about 11.6% of the building 
polygons are eligible for SHM analysis, among which 
10.8% (1,058 buildings) exhibit anomalous deforma
tion. Statistical analyses suggest that building ages 
and soil SPT-N values can only partially explain the 
outlier fractions and large outlier values. Additional 
unmodeled factors are needed to account for the 
observed variability. For example, building materials 
and construction quality issues – such as the sea sand 
buildings constructed in the 1980s and 1990s – may 
contribute to the high deformation anomalies 
observed in buildings aged 30–50 years.

When focusing on buildings within urban regen
eration plans, about 9.4% are eligible for analysis, with 
11.9% (111 buildings) showing anomalous deforma
tion. The overall assessment reveals several key fac
tors affecting the application of SAR-based SHM in 
urban planning: about 59% of the buildings lack a 
sufficient number of scatterers, 49% of the buildings 
with enough scatterers lack proper scatterer spatial 
distribution, 62% of urban area lacks building poly
gons, 46% of buildings lack age information, and 63% 
of the scatterers are not used due to various reasons. 
These limitations can be mitigated by incorporating 
SAR data from multiple viewing geometries and/or 
multiple missions, increasing the number of acquisi
tions and a broader distribution of spatial baselines, 
and fostering proactive collaboration with govern
ment agencies to obtain building polygon and age 
datasets that may have official legal validity.

Despite these constraints, the number of detect
able anomalies (10.8% among all eligible buildings 
and 11.9% among those in urban regeneration 
plans), along with their magnitudes and spatial dis
tribution, can still provide valuable supports for gov
ernment agencies to develop actionable plans and 
prioritize regeneration efforts more effectively. To 
integrate the SAR-based SHM analysis into resilient 
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urban management, we recommend the following 
practices: combining SHM analysis results with field 
observations to justify the need for more detailed 
assessments, implementing preventive measures in 
areas exhibiting specific clustering patterns in the 
SHM results, and adopting a consistent, long-term 
monitoring approach to develop tracking capabilities 
and support machine learning-based predictions.
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Appendix

Appendix A. Scatterer missing assessment 
analysis

To perform SHM analysis, scatterers must be assigned to 
specific polygons. However, among the ~3.3 million scatterer 
points identified by Tomo-PSInSAR, only ~1.2 million (~37%) 
are successfully matched to an OSM polygon. This means 
that 63% of the scatterers are not assigned and hence not 
used in the analysis. Several factors contribute to the missing 
assignments, including 1) missing polygons, 2) scatterers 
originating from non-building structures (e.g., bridges, light 
poles), and 3) geometric inaccuracies in either the building 
polygons or the scatterers. In particular, since building poly
gons do not always capture precise positions or irregular 
outer wall geometries, some scatterers are inevitably omitted 
during assignment.

Estimating the relative contribution of these factors is 
challenging due to the spatial inhomogeneity of building 
polygons. In regions with numerous missing polygons, it is 
difficult to isolate the proportion of missing assignments 
caused by geometric inaccuracies from that of missing 
polygons. To address this issue, we select areas where 
building polygons are relatively complete and estimate 
the proportion of non-building-related scatterers and geo
metry errors. Assuming the mean proportions from these 
areas are representative, we estimate the proportion of 

missing assignments due to absent polygons by subtracting 
the other two from the overall 63% missing rate.

For this analysis, we manually select 15 areas with well- 
covered building polygons, spanning various urban and infra
structural settings—including residential zones, school 
districts, parks, car parks, an airport, viaducts, and bridges 
(Table A1) (Figure A1). Within these areas, we identify scatterers 
lacking OSM assignments and visually classify their exclusion 
reasons. Scatterers linked to missing polygons (only a few) or 
non-building structures are also identified by comparing their 
locations with buildings shown on optical satellite imagery. 
Geometric errors in either the polygons or scatterers are 
assessed based on their alignment with and distance to poly
gon edges, typically appearing as small offset (<3–5 meters).

Table A1 summarizes the results for each area. To deter
mine representative proportions for missing assignments 
due to geometric errors and non-building-related scatterers, 
we first exclude scatterers unassigned due to absent poly
gons. We then compute these two proportions per area 
and average them over all areas and all scatterers, respec
tively. If we adopt the area-based mean values as the 
representative proportions, the estimated proportion of 
missing assignments due to absent polygons is 63%– 
13.1%-16.2% = 33.7%. Alternatively, if we adopt the mean 
over all scatterers as the representative proportions, the 
estimated proportion of missing assignments due to absent 
polygons is 63%–15.5%–9.5% = 38%. The latter value is 
adopted in Figure 15d.

Table A1. Missing assignment analysis for scatterers within selected areas with relatively complete urban polygons.

Area 
ID

Area 
Size 

[km2]

Total Number 
of Scatterers 

(A)

Scatterers 
Assigned 

(B)

Scatterers Not Assigned (C)

Features in 
Area*

(C1) 
Geometric Error

(C2) 
Non-building

(C3) 
Missing Polygon

1 0.25 5065 4238 765 1 61 R, S, P, PC
2 0.35 5602 4922 668 7 5 R
3 1.85 4354 2473 506 1014 361 A, CP
4 0.33 6741 5978 676 7 80 R
5 0.28 6410 5180 993 176 61 R, P, B
6 030 1075 344 1 730 0 P, V
7 0.14 3559 2375 1002 39 143 R, P
8 1.97 1364 5 0 1359 0 B
9 0.15 3364 2848 364 86 66 P
10 0.44 9517 7268 1185 125 939 R, S, P
11 0.21 4798 3409 941 5 443 R, P
12 0.17 2715 2500 0 57 158 R, S, CP
13 0.18 3496 2361 498 256 381 R, P, CP
14 1.06 15889 11526 2415 1600 348 R, S, P, CP, B
15 0.69 11082 5907 2614 2316 245 R, S, P, CP, V

Proportions [%]
C1/(A-C1) C2/(A-C1)

Mean (over areas) 13.1±8.5 16.2±29.1
Mean (over all scatterers) 15.5 9.5

*R: Residential zone 
S: School district 
P: Park 
CP: Car park (outdoor) 
A: Airport 
V: Viaduct 
B: Bridge
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Figure A1. Scatterer assignment analysis. (a) Map showing areas (red polygons) chosen with relatively complete building polygons. (b) 
Examples of the three types of scatterer missing assignment.
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