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CIVIL ENGINEERING

Effectiveness of the red-edge band of RapidEye in land cover classification
Tzu-Ying Chen, Hui-Hsin Chen, Tee-Ann Teo and Peter Tian-Yuan Shih

Department of Civil Engineering, National Yang Ming Chiao Tung University, No 1001 Daxue Rd East Dist, Hsinchu City 300093, Taiwan

ABSTRACT
This study examined the effectiveness of the red-edge band using RapidEye satellite images for land 
cover classification. The analysis comprises three schemes for evaluating the effectiveness of the red- 
edge band: principal component analysis (PCA), vegetation index, and supervised image classification. 
The factor loadings computed by means of PCA were applied to analyze the importance of each band in 
the training samples. The analysis results of the factor loadings indicated that the red-edge band 
performed better than the visible band in the vegetation region. When rice paddy and peanuts were 
classified using the NDVI_RE, the improvement in accuracy was approximately 7%. Further, the accuracy 
of rice paddy classification using CMFI_RE was improved by approximately 6%. It can thus be inferred that 
the red-edge band made a certain contribution to vegetation classification. In land cover classification 
using reflectance, the accuracy of the support vector machine (SVM) was higher than that of the 
maximum likelihood classifier (MLC), the iterative self-organizing data analysis technique, and the 
K-means algorithm. When the red-edge band was included, the overall accuracy improved from 1% to 
3%. The results of our experiments indicated that the red-edge band contributed marginally to land cover 
classification.
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1. Introduction

In recent years, the spectral resolution of several commercial 
high-resolution satellites (e.g. RapidEye, WorldView-2, 
WorldView-3) has improved owing to the incorporation of an 
additional red-edge band. The red-edge band lies between the 
red and near-infrared (NIR) bands

Corresponding author e-mail: Tee-Ann Teo, tateo@nycu. 
edu.tw

and can be used to obtain a great amount of spectral 
information for land cover classification. Numerous studies 
have examined the effectiveness of different vegetation indices 
(VIs) obtained from multispectral bands. For example, Lyon 
et al. (1998) used seven VIs to investigate change in land 
cover. The authors found that the normalized difference vege-
tation index (NDVI) was the best indicator of vegetation change 
than other indices. Agapiou, Hadjimitsis, and Alexakis (2012) 
compiled a list of 71 broadband and narrowband VIs to evalu-
ate the benefits of using VIs for crop classification. Although 
broadband NIR can be used to effectively classify vegetated 
and non-vegetated areas, it might overlook minor spectral 
changes. Their experimental results showed that the narrow-
band VIs increased the difference between archeological and 
non-archeological areas up to 20%.

Several studies have demonstrated that the red-edge band 
improves classification accuracy, especially in terms of distin-
guishing between different plants or crops. Schuster, Förster, 
and Kleinschmit (2012) designed three combinations – red- 
edge, NDVI, and NDVI_RedEdge – to evaluate the benefits of 
including the red-edge band when acquiring RapidEye satel-
lite image. Both support vector machines (SVMs) and the 

maximum likelihood classifier (MLC) were used to further 
strengthen the explanatory power of the classification results. 
The experimental results indicated that the additional red- 
edge band marginally increased the overall accuracy (OA) by 
2%. Moreover, the red-edge band improved the OA for the 
individual categories in distinguishing different plants. 
Similarly, Adelabu, Mutanga, and Adam (2014) evaluated the 
effect of the red-edge band on the RapidEye satellite images 
used to classify insect defoliation levels. Both SVM and ran-
dom forest (RF) classifiers were used to perform three accu-
racy assessments. When the red-edge band was included, the 
OA of SVM and RF increased by approximately 19% and 21%, 
respectively. Kim and Yeom (2014) compared the effective-
ness of the red-edge and texture features. The results indi-
cated that the broadband red-edge band was slightly superior 
in terms of its texture features when classifying crop condi-
tions in relatively homogeneous rice paddy environments. Li 
et al. (2017) performed a spectral analysis by using VIs for land 
cover classification in an arid region to discuss the effective-
ness of the red-edge band. The experimental results demon-
strated that the red-edge band contributed to a marginal 
improvement in classification accuracy. Apart from traditional 
machine learning, Saini and Ghosh (2019) employed extreme 
gradient boosting (XGBoost) to analyze the effect of the red- 
edge band on land cover classification by using RapidEye 
multispectral imagery. They proved that the results obtained 
using all classifiers with the red-edge band were effective and 
reported that XGBoost can prove beneficial in solving more 
complex classification problems. Instead of using the red- 
edge band for land cover classification, Meng et al. (2021) 
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used the SCOPE model to quantitatively estimate the physi-
cochemical parameters of vegetation. Their experimental 
results indicated that the red-edge band also improved the 
retrieval of vegetation parameters.

Principal component analysis (PCA) can be used in conjunc-
tion with data transformation to identify important compo-
nents. PCA can also be employed to reduce the 
dimensionality of data (Saegusa, Sakano, and Hashimoto 
2004). Munyati (2004) applied PCA to reduce the dimensional-
ity of a dataset and compute the eigenvalues and factor load-
ings of the principal components of each original band. The 
first and second principal components usually have higher 
explanations, and the factor loadings of each of the bands 
can be computed to determine the contributions of individual 
bands.

The majority of previous studies have focused on examining 
the effectiveness of the red-edge band in image classification 
applications. However, the capability of the classifier can 
impact the effectiveness of the red-edge band. Instead of 
using image classification, we analyzed the separability of the 
training samples to reduce the effect of the image classifier. We 
also provided a different perspective from factor loadings, as 
factor loadings is rarely discussed on the red-edge band. 
Therefore, the contribution of this study is to discuss the effec-
tiveness of red-edge from the perspective of factor loadings 
and different classifiers. We not only analyzed the results of 
vegetation areas but also compared the effects of non- 
vegetation areas with and without the red-edge band.

This study aimed at evaluating the effectiveness of the 
RapidEye red-edge band. In the first part of this study, we 
adopted the Jeffries–Matusita (JM) distance to discuss separ-
ability, and used PCA to discuss the explanations provided by 
different bands. The effectiveness indicated the improvement 
of spectral separation in JM and contribution to the major 
principal component in PCA. In the second part, the classifica-
tion results were compared using different VIs from the red- 
edge and NIR bands. The effectiveness referred to the improve-
ment of classification accuracy using red-edge-derived VIs. In 
the third part, land cover classification was performed using 
a supervised classifier. The effectiveness indicated the improve-
ment of classification accuracy when red-edge was available.

2. Material and methods

2.1. Study area and test images

The study area was located in the middle western part of 
Taiwan (Figure 1), between longitude 120°E and 121°E and 
latitude 23.6°N and 24°N. The test images were RapidEye multi-
spectral satellite images with the red-edge band. The RapidEye 
image captured on 16 October 2015, shows fields with crops, 
such as rice paddy and peanut. A RapidEye basic (Level 1B) 
image comprises the blue, green, red, red-edge, and NIR bands, 
with wavelengths ranging from 410–510 nm, 520–590 nm, 
630–685 nm, 690–730 nm, and 760–850 nm, respectively. The 
spatial resolution was 6.5 m, and the radiometric resolution was 
12 bits. We adopted a rational function model (Teo and Huang 
2013) and ground control points to perform image orthorecti-
fication. For radiometric correction, ATCOR in PCI Geomatica 

was used to convert the digital number of an image to 
a reflectance value.

2.2. Ground truth data of crops

The ground truth data for evaluation were based on a farmland 
cover map, produced by the Taiwan Agricultural Research 
Institute on the basis of field investigations. The attributes of 
the farmland cover map were the crop type, crop height, 
growth stage of the crop, and survey date. We determined 
the crop types in the training samples by using the ground 
truth and the aforementioned attributes. The field investigation 
date and RapidEye imaging date were within a month of each 
other. The main crop types included rice paddy and peanuts.

2.3. Training samples selection

According to the characteristics of the study area, we divided 
the land cover into four categories: water body, bare earth, rice 
paddy, and peanut. The rice paddy and peanut regions were 
selected directly from the farmland cover map, while the train-
ing samples of the water body and bare earth were digitized 
directly from the satellite images. The selection criteria of the 
training and testing samples and their numbers are described 
as follows: (1) the peanut regions were obtained from the 
farmland cover map with the crop height attribute of > 
20 cm; (2) the rice paddy areas were covered with non- 
harvest rice paddies in the farmland cover map with the crop 
height attribute of > 40 cm; (3) the bare earth was covered by 
sand from river beds and fallow lands; and (4) the water body 
included seas, lakes, and rivers, constituting 23% of the whole 
training samples. To avoid the class imbalance problem, the 
proportion of each class was similar, and the proportions of the 
peanut regions, rice paddy, bare earth, and water body were 
23%, 21%, 21%, and 34%, respectively. Table 1 summarizes the 
number of training and test data sets. Figure 2 presents an 

Figure 1. Test image on 10/16/2015.

22 T.-Y. CHEN ET AL.



analysis of the reflectance differences between these four 
classes in different spectral bands. It was easy to separate 
bare earth from the other classes. The rice paddy and peanuts 
could not be separated in the visible bands; however, they 
could be distinguished in the red-edge and NIR bands.

2.4. Evaluating the effectiveness of the red-edge band

In this study, we analyzed the effectiveness of the red-edge band 
for land cover classification. In the first part, the JM distance was 
used to discuss separability, and PCA was used to discuss the 
explanations of different bands. Both JM and PCA were applied to 
the training dataset. In the second part, the classification results 
obtained from the red-edge and NIR bands by using the different 
VIs were be compared by test dataset. In this part, the effective-
ness of the red-edge band with different VIs was assessed by test 
dataset. In the third part, land cover classification was performed 
by using the supervised and unsupervised classifiers. The SVM, 
MLC, iterative self-organizing data analysis technique (ISODATA), 
and K-means were applied to classify the four types of land cover.

After the second and third part classification, several accu-
racy indices, such as the OA and Kappa coefficients (κ), were 
applied for accuracy analysis. The OA was computed by divid-
ing the total number of correct pixels by the total number of 
pixels in the error matrix (Equation 1). The Kappa (κ) 
(Equation 2) was a measure of the difference between the 
actual agreement between the reference data and an auto-
mated classifier and the chance agreement between the refer-
ence data and a random classifier. The variance of Kappa could 

be computed by using Equation 3 through the delta method 
(Congalton and Green 1999). 

OA ¼
1
N

Xn

i¼1

Nii

 !

� 100%; (1) 

κ ¼
N
Pn
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where n = number of rows in the confusion matrix; 
N = total number of observations included in the confusion 
matrix; Nii = number of correct observations in the diagonal 
direction; Ni+ = total number of observations in the direc-
tion of row i; and N+i = total number of observations in the 
direction of column i.P0 ¼

1
N

Pn
i¼1 Nii ; P1 ¼

1
N2
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i¼1ð Niþ�NþiÞ; 
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2.
In this study, the OA and Kappa coefficients were included in 

the accuracy assessment. Moreover, a Kappa analysis and 
a pairwise Z-test were conducted to determine whether the 
two classifications were significantly different (Weih and Riggan 
2010). The Z-test was used to test for statistical significance. We 
performed this test to evaluate whether the classifications, with 
and without the red-edge band, were significantly different from 
each other. The critical Z-score values in the 95% confidence 
level were −1.96 and +1.96 standard deviations. If the value of 
Z-score was larger or less than 1.96, the null hypothesis was 
rejected and the alternative hypothesis was accepted. Thus, the 
p-value associated with a 95% confidence level was 0.05. The 
pairwise Z-scores and probabilities (p-values, α) were calculated 
for each combination of the two classifications (Equation 4). This 
study applied the Z-test by testing a hypothesis (p-values 
α = 0.05 and Z0.05 = 1.96): If the p-value was < 0.05, the null 
hypothesis was rejected, meaning that the two classifications 
were considered to be statistically significantly different. 

Z ¼
κ1 � κ2j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

κ1
þ σ2

κ2

q ; (4) 

where κ1andκ2 are the Kappa coefficients for the two classifica-
tions, and σκ1 and σκ2 are the standard deviations of the two 
aforementioned Kappa coefficients for the two classifications.

Table 1. Number of training and testing datasets.

Class
Train Test Train Test Train+Test Train Test

Unit:polygons Unit:polygons Unit:pixels Unit:pixels Unit:pixels Unit:% Unit:%

Peanuts 271 466 5946 10,224 16,170 37% 63%
Rice paddies 258 415 5660 9104 14,764 38% 62%
Bare earth 49 75 5884 9006 14,890 40% 60%
Water 10 37 5093 18,844 23,937 21% 79%
Sum 588 993 22,583 47,179 69,762

Figure 2. Mean reflectance values of different types of land cover in each band.
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2.4.1. Analysis of training samples
2.4.1.1. Jeffries–Matusita (JM) distance. In this study, the 
JM distance, like the divergence, was used to measure the 
statistical separability between two classes in terms of their 
spectral reflectance (Equation 5) (Swain and Davis 1978). 

JM ¼ Jij ¼ 2 1 � e� αð Þ½ �
1
2; (5) 

α ¼
1
8

Ui � Uj
� �T

P
i þ
P

j

2
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� �

þ
1
2
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�
�
�

�
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�
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�
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�
�

r

2

6
6
4

3

7
7
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where (i, j) = two classes; Ui = mean value of class i; Uj = mean 
value of class j; Σi = covariance of class i; Σj = covariance of 
class j.

The JM distance ranged from 0 to 
ffiffiffi
2
p

(≈1.414). A JM distance 
of 1.414 indicated that the two classes were well separated. 
Usually, a JM distance greater than 

ffiffiffiffiffiffiffi
1:9
p

(≈1.386) was consid-
ered acceptable for distinguishing between two classes (Shafri, 
Anuar, and Saripan 2009). If the JM distance between two 
classes was less than 1, the two classes were said to be spec-
trally overlapped and should be merged into a single class.

2.4.1.2. Principal component analysis (PCA). In PCA, an 
image was simply transformed by linear combinations of 
weighted multispectral images. The PCA transformation coeffi-
cients were statistical quantities called eigenvectors. PCA only 
changed the data representation and did not change the data 
content, so the total variation before and after PCA transforma-
tion remains the same (Equation 7) (Jensen 1996). 

Xn

i¼1

Var xið Þ ¼
Xn

i¼1

Var PCið Þ; (7) 

whereHT xi= variable, PCi= principal component, n = number of 
variables, and VarðÞ = variance.

Explanation was the percentage of the total variance in 
the data explained by each component (Equation 8). 
A component with a high value of explanation was more 
informative than other components. It was also considered 
more important than other components. It was possible to 
determine how each band loads or was associated with 
each principal component by computing its factor loading 
(Cji) (Equation 9) (Hair et al. 1998), which ranges from −1 to 
1. The factor loadings (Cji) represented the contribution of 
each band (i.e. blue, green, red, red-edge, and NIR) to each 
principal component (PCi). They represented the degree of 
correlation between each band and the principal compo-
nents. If the factor loading of a band was greater than 0.5, 
the band makes a large contribution to the corresponding 
principal component (Hair et al. 1998). 

Explanation %ð Þ ¼
Var PCið Þ

Pn
i¼1 Var PCið Þ

� 100%; (8) 

Cji ¼ eigenvectors�
ffiffiffiffi

λj

q

: (9) 

where λj = jth eigenvalue.
This study used main component (Σ(xj+)2) to analyze the 

contribution of each band. The first two major principal com-
ponents (PC1 and PC2) were selected and PC1

2+ PC2
2 was main 

component from PC1 and PC2. The larger the main component, 
the more important it was with each band. In this study, the 
factor loading was calculated under two different conditions. 
Under the first condition, the entire image was used to calcu-
late the factor loadings. This condition was used to compare 
the contributions of different bands to the major principal 
component. Under the second condition, different types of 
land covers, such as vegetation, water, and bare earth, were 
used to calculate the factor training areas. This condition was 
used to compare the contributions of different bands in differ-
ent land covers.

2.4.2. Land cover classification using different vegetation 
indices
The VIs can be divided into broadband and narrowband 
indices. RapidEye images are broadband images. 
Nevertheless, Agapiou, Hadjimitsis, and Alexakis (2012) and 
Baluja et al. (2012) used RapaidEye to calculate the VIs for 
narrowband images. Thus, this study used the VIs designed 
from broadband and narrowband images, including the NDVI, 
cropping management factor index (CMFI), optimized soil- 
adjusted vegetation index (OSAVI), transformed chlorophyll 
absorption ratio index (TCARI), chlorophyll absorption ratio 
index (CARI), and modified chlorophyll absorption ratio index 
(MCARI).

In this study, two land cover categories were considered for 
decision tree classification. The first category represented the 
classification of vegetation and non-vegetation areas and was 
used to compare the effectiveness of the red-edge band for 
vegetation classification by using different VIs. The second 
category included four classes: water body, bare earth, rice 
paddy, and peanut. The thresholds for decision tree classifica-
tion were extracted from the training data.

A VI was a type of index obtained by transforming multi-
spectral bands to obtain new information. It could also reveal 
the health status of vegetation. For example, the NDVI was the 
most effective and commonly used index for examining the 
vegetation condition. Spectral models and indices were also 
being developed to improve vegetation sensitivity by account-
ing for atmospheric and soil effects. In this section, the effec-
tiveness of the red-edge band will be analyzed by using various 
VIs (Table 6). Only the VI was used for classification, and 
a simple decision tree method was used to classify different 
land covers.

2.4.3. Land classification using reflectance values
This section analyses accuracy of image classification when red- 
edge band was available. This study assessed whether there were 
any significant differences between the classification results 
obtained with and without the red-edge band. The supervised 
classification procedure classified the unknown points by using 
the spectral information of the training samples. Gong, Shen, and 
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Lu (2019) mentioned that a large number of classifiers have been 
developed and that the MLC and SVM have emerged as the two 
representative classifiers in recent decades. The MLC employs 
probability density functions for classifying an unidentified pixel 
by computing the probability of the pixel value belonging to each 
category (Jensen 1996). The SVM aims to find a margin in the 
feature space to separate different classes, with the selected hyper-
plane being the one that maximizes the margins. If a hyperplane is 
farthest from its support vector, it is called the best classification 
hyperplane. The common unsupervised classifications employed 
are the ISODATA (Jensen 1996) and K-means (Jensen 1996) cluster-
ing method. The ISODATA classification method involves calculat-
ing the Euclidean distance from a point to the center of any 
category. If the distance to the center of the category is the short-
est, it is classified into this category, with the separation between 
the categories being the largest. K-means divides data into the 
number of groups specified by the user during classification and 
finds the category with the shortest Euclidean distance from each 
point to the center of each category. All these four classifiers are 
used to examine the effectiveness of the red-edge band.

3. Results and discussions

3.1. Analysis of training samples

3.1.1. Jeffries–Matusita distance for the training data sets
In this study, the JM distance was calculated to examine the 
separability of the training samples between peanut, rice 
paddy, bare earth, and water. Table 2 compared the JM dis-
tances calculated with and without the red-edge band. The JM 
distance of 1.386 was used as a criterion to discriminate 
between two classes. Regardless of whether it was calculated 
with or without considering the red-edge band, the JM dis-
tances of peanut/rice paddy and peanut/bare earth in the crop 
fields were less than 1.386, implying that it was difficult to 
separate these two classes. Although the JM distance of pea-
nut/rice paddy and peanut/bare earth was less than 1.386, the 
additional red-edge band increased the JM distance of peanut/ 

rice paddy from 1.144 to 1.163 and that of peanut/bare earth 
from 1.374 to 1.376. The improvement rate of peanut/rice 
paddy was 0.019, which was relatively higher than the other in- 
between classes. When an additional red-edge band was avail-
able, the other in-between classes also showed marginal 
improvement.

3.1.2. Principal component analysis of training set
Figure 3 shows the factor loadings obtained using entire 
images. The explanations of the first and second principal 
components were 84% and 13%, respectively. Therefore, the 
first and second principal components accounted for over 
97% of the explanation; these two components were more 
explanatory than the other components. We will only dis-
cuss the first two principal components because the last 
three principal components exhibited lower levels of varia-
tion. The factor loadings of the blue, green, red, and red- 
edge bands were greater than 0.5 for the first principal 
component. Only the red-edge and NIR bands had factor 
loadings greater than 0.5 for the second principal compo-
nent. These results indicated that all the bands contributed 
to the first two principal components. Moreover, the con-
tributions of the red-edge band to both the principal com-
ponents were more descriptive.

To obtain a better understanding of the case with dif-
ferent types of categorized land covers, we extracted the 
vegetation, bare earth, and water regions to calculate the 
factor loadings. Table 3 shows the factor loadings in the 
vegetation regions, and the last column presents the sum-
mation of the first two principal components. The summa-
tion of the first two principal components of the NIR band 
(i.e. 0.990) was the most explanatory and that of the red- 
edge band (i.e. 0.981) was the second explanatory for the 
vegetation region. Tables 4 and 5 show the factor loadings 
of the water and bare earth regions. The red-edge band 
had the lowest factor loading for the bare earth region. In 
other words, the red-edge band made a small contribution 
to the bare earth region.

Table 2. JM distances computed with and without consideration of the red-edge band.

4 bands without red-edge

Peanuts Rice paddies Bare earth Water

Peanuts - 1.144 1.374 1.410
Rice paddies - 1.413 1.414
Bare earth - 1.400
Water -

5 bands with red-edge

Peanuts Rice paddies Bare earth Water

Peanuts - 1.163 1.376 1.412
Rice paddies - 1.414 1.414
Bare earth - 1.402
Water -

Improvement

Peanuts Rice paddies Bare earth Water

Peanuts - 0.019 0.002 0.002
Rice paddies - 0.001 0.000
Bare earth - 0.002
Water -
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In addition, the red-edge band made the second most con-
tribution to the vegetation region and made the least contribu-
tion to the bare earth region. However, it made the most 
contribution to the water region. Across all the study areas, 
the explanatory variation of each band exceeded 90%; there-
fore, each band contributed meaningfully to the principal com-
ponents. In the vegetation area, each band made an important 
contribution to the first principal component, and the factor 
loadings of the red-edge and NIR bands revealed that these 
bands offered more information for identifying vegetation. In 
the water body, the red-edge band revealed the highest factor 
loading among the five bands; thus, the red-edge band made 
a weighty contribution in the water region.

3.2. Land cover classification using different vegetation 
indices

If the OA was higher than 80% and Kappa was higher than 0.6, 
the classification result was considered good (Landis and Koch 
1977; Fitzgerald and Lees 1994). The results of the two cate-
gories were summarized in Table 7. When using different VIs, 
the classification accuracies, from high to low, were in the 
following order: CMFI > MCARI > TCARI > OSAVI > NDVI > 
CARI. Because most of the VIs showed OA values higher than 
90%, they yielded good classification results, except the CARI 
(the blue band was included in the CARI). To compare the 
accuracies obtained using the NIR and red-edge bands, after 
changing the NDVI, CMFI, and OSAVI from the NIR band to the 
red-edge band, only the accuracy of the NDVI improved. There 
was a significant difference between the results when the red- 
edge band was considered and ignored for the CMFI and 
OSAVI in the Z-test; however, there was no significant differ-
ence for the NDVI. It can thus be inferred that the NIR band 
was more effective for two-category classification than the 
red-edge band. In terms of the VIs obtained using the red- 
edge band, the NDVI_RE and CMFI_RE were superior to the 
OSAVI_RE. Therefore, this study suggests that the NDVI or 
CMFI be used as a VI in the red-edge band. To summarize, 
different VIs were used to divide land cover into vegetation 
and non-vegetation areas, and most VIs showed good classi-
fication accuracies. The top-five VIs were CMFI, CMFI_RE 
MCARI, TCARI, and NDVI_RE.

Although the results reported by Adelabu, Mutanga, and 
Adam (2014) revealed a 20% improvement with the use of 
the red-edge band for classifying insect defoliation, this study 
found that the OA difference between the classification of 

Figure 3. Factor loadings of entire area.

Table 4. Factor loadings in bare earth region.

PC1 PC2 PC3 PC4 PC5 PC1
2+ PC2

2

Blue 0.990 −0.106 −0.079 −0.050 −0.029 0.990
Green 0.995 −0.029 −0.056 0.073 −0.002 0.992
Red 0.995 −0.083 0.007 −0.024 0.051 0.997
Red edge 0.974 0.186 0.131 0.001 −0.020 0.983
NIR 0.035 0.999 −0.034 −0.005 0.005 0.999

Table 5. Factor loadings in water region.

PC1 PC2 PC3 PC4 PC5 PC1
2+ PC2

2

Blue 0.585 −0.792 −0.115 −0.134 −0.001 0.969
Green 0.860 −0.472 −0.128 0.145 0.001 0.963
Red 0.960 −0.015 0.277 −0.008 −0.036 0.922
Red edge 0.854 0.515 0.021 −0.026 0.068 0.994
NIR 0.545 0.814 −0.195 −0.030 −0.044 0.959

Table 3. Factor loadings in vegetation region.

PC1 PC2 PC3 PC4 PC5 PC1
2+ PC2

2

Blue 0.940 −0.299 −0.072 0.140 0.038 0.974
Green 0.978 −0.095 0.182 0.020 −0.040 0.965
Red 0.913 −0.378 −0.079 −0.114 −0.058 0.977
Red-edge 0.958 0.251 0.010 −0.076 0.117 0.981
NIR 0.787 0.608 −0.060 0.032 −0.071 0.990
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vegetation and non-vegetation areas was only approximately 
1%. Most of the VIs attained accuracy levels of 95%. Kim and 
Yeom (2014) also showed a slight OA improvement in paddy 
rice classification. The classification accuracy apparently 
depends on the investigated land-use class.

The results of the accuracy analysis conducted with four 
classes are summarized in Table 8. The classification accu-
racy was in the following descending order: CMFI, TCARI, 
MCARI, NDVI, OSAVI, and CARI. The TCARI and MCARI were 
narrowband VIs that use the red-edge band. The benefits of 
the red-edge band for vegetation classification are that 
these two VIs are superior to traditional NDVI. The 
NDVI_RE, CMFI_RE, and OSAVI_RE were used as VIs when 
the band was changed from NIR to red-edge. The α values 
of all of these indices were smaller than 0.05, indicating 

a significant difference between the results obtained using 
the NIR and red-edge bands. When rice paddy and peanuts 
were classified using the NDVI_RE, the classification accu-
racy was improved by almost 7%. Moreover, the accuracy of 
the rice paddy with the CMFI was improved by approxi-
mately 6%. The accuracies of the NDVI_RE and CMFI_RE 
were superior to those of the OSAVI_RE. It can thus be 
inferred that the red-edge-derived VI made a certain con-
tribution to the vegetation.

3.3. Land classification using reflectance values

In this study, two land cover categories were considered for 
supervised and unsupervised classification. The first category 
included water, bare earth, and vegetation. Vegetation was further 

Table 7. Classification assessment of all VIs with two categories.

VI OA (%) KAPPA σkappa Z-TEST

NDVI 95.2383 0.9049 0.4252 α > 0.05
NDVI_RE 95.6523 0.9132 0.4074
CMFI 97.9120 0.9582 0.2861 α < 0.05
CMFI_RE 96.7925 0.9358 0.3529
OSAVI 95.2384 0.9049 0.4252 α < 0.05
OSAVI_RE 84.1507 0.6803 0.7367
TCARI 96.6249 0.9325 0.3610 -
CARI 59.1537 0.3530 0.8693 -
MCARI 96.6249 0.9325 0.3610 -

Table 8. Classification assessment of all VIs by using four categories.

Individual accuracy

Coefficient 
Index Water Bare earth Rice paddies Peanuts OA Kappa σkappa Ztest

NDVI 100 85.89 50.47 63.61 70.76 0.66 0.0074 α < 0.05
NDVI_RE 99.63 69.94 62.43 70.98 68.80 0.62 0.0059
CMFI 99.99 81.44 55.21 73.52 74.55 0.54 0.0056 α < 0.05
CMFI_RE 99.95 67.47 61.21 68.26 68.65 0.62 0.0057
OSAVI 100 82.04 39.42 54.72 70.04 0.62 0.0055 α < 0.05
OSAVI_RE 100 77.58 1.65 51.35 60.25 0.46 0.0054
TCARI 99.94 69.54 61.03 82.48 72.84 0.59 0.0058 -
CARI 99.09 96.89 44.63 34.76 62.99 0.64 0.0056 -
MCARI 99.84 70.32 59.96 87.78 71.01 0.60 0.0059 -

Table 6. Equations of all vegetation indices.

Index Equation Reference

NDVI ρNIR � ρRed
ρNIRþρRed

(Rouse et al. 1974)

NDVI_RE ρRE � ρRed
ρREþρRed

(Rouse et al. 1974)

CMFI ρRed
ρNIRþρRed

¼ 1
2 � 1 � ρNIR � ρRed

ρNIRþρRed

� �
(Wan et al. 2017)

CMFI_RE ρRed
ρREþρRed

¼ 1
2 � 1 � ρRE � ρRed

ρREþρRed

� �

OSAVI 1:16�ðρ800 � ρ670Þ

ρ800þρ670þ0:16
(Rondeaux, Steven, and Baret 1996)

OSAVI_RE 1:16�ðρ800 � ρ700Þ

ρ700þρ670þ0:16
(Rondeaux, Steven, and Baret 1996)

TCARI 3CA ρ700 � ρ670ð Þ � 0:2� ðρ700 � ρ550Þ5
ρ700
ρ670
Þ (Haboudane et al. 2002)

CARI ρ700 � ρ500ð Þ�ρ670þρ670þ ρ550 � ρ700 � ρ500ð Þ�ρ670ð Þ�ρ550ð ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ρ700 � ρ500ð Þ�00I22
p (Broge and Leblanc 2001)

MCARI ρ700 � ρ670ð Þ � 0:2� ρ700 � ρ550ð Þ � 5 ρ700
ρ670
Þ (Daughtry et al. 2000)

_RE: new index with red-edge band instead of NIR band 
ρRed,ρRE, and ρNIR: Red band, red-edge band, and NIR band 
ρ500: Blue band ρ550: Greed band ρ670: Red band 
ρ700: Red-edge band ρ800: NIR band

Note. Compiled from Agapiou et al. (2012) and Baluja et al. (2012).
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divided into peanuts and rice paddy in the second category. 
A total of four classes were considered: water body, bare earth, 
rice paddy, and peanut. In this section, the benefits of using the 
red-edge band and other four bands for land cover classification 
will be compared. Each classifier was to perform classification 
twice: once without the red-edge band (a total of four bands) 
and once with the red-edge band (a total of five bands). The 
accuracy assessment included the OA and Kappa coefficients. In 
addition, a pairwise Z-test was conducted to determine whether 
the two classifications were significantly different.

Regarding the results of the three categories, the OA values of 
most classifiers were higher than 94% and the Kappa values 
reached 0.9, except for ISODATA. Most classifiers yielded good 
classification results and could be used to classify these three 
categories (Table 9). A comparison of the results obtained, with 
and without using the red-edge band, revealed that the red-edge 
band marginally improved the classification results, except for 
ISODATA. Because the SVM classified these three classes satisfacto-
rily in the hyperplane, there was no significant difference between 
the set of four bands and five bands in SVM. Further, the p-value of 
SVM was greater than 0.05. The improvement rate of the MLC in 
bare earth was approximately 2%. Each p-value was smaller than 
0.05, meaning there was a significant difference between the results 
obtained with and without using the red-edge band. According to 
the accuracy analysis results, the use of the red-edge band in MLC 
and SVM contributed to an approximately 2% improvement in 
classification accuracy for rice paddies and peanuts.

In the results obtained for the four categories (Table 10), 
vegetation was divided into peanuts and rice paddy. By using 
the red-edge band as a classification feature, for both supervised 
and unsupervised classifications, the OA and Kappa improved. 
Each p-value was smaller than 0.05, meaning there was 
a significant difference between the results obtained with and 
without using the red-edge band. However, the accuracies for 
unsupervised classification for rice paddies and peanuts were 
less than 60%. According to the accuracy analysis results, the use 
of the red-edge band in MLC and SVM contributed to an 

approximately 2% improvement in classification accuracy for 
rice paddies and peanuts. A comparison between the MLC and 
SVM, regardless of the red-edge band usage, revealed that SVM 
was superior to MLC by approximately 5%. In summary, the red- 
edge band improved the classification of rice paddies and pea-
nuts by approximately 1–3% with supervised classifications. The 
effectiveness of the red-edge band was related to the classifica-
tion targets. Owing to the different classification targets, the 
improvement in accuracy achieved by this study by using the 
red-edge band (i.e. 2%) was different from that achieved by 
Adelabu, Mutanga, and Adam (2014) (i.e. 20%) but similar to 
the result obtained by Saini and Ghosh (2019) (i.e. 3%). The 
accuracies of classification were related to land-use classes. The 
OA of the supervised classifier improved when classifying rice 
paddy and peanuts. Moreover, the Z-test indicated a significant 
difference between the results obtained using four and five 
bands. These findings imply that the red-edge band slightly 
improved the accuracy and influenced the classification process.

4. Conclusions and future works

The objective of this study was to evaluate the benefits of using 
the red-edge band of RapidEye for land cover classification. To 
this end, the effectiveness of the red-edge band was examined 
by using training samples, VIs, and land cover classification. We 
employed training samples to evaluate the effectiveness of the 
red-edge band by factor loading, which in the context of the 
red-edge band, is rarely considered in the literature. While 
RapidEye is the first satellite to implement the red-edge band, 
many satellite sensors can include the red-edge band to 
increase the number of multi-spectral bands. The major find-
ings of this study are that there was only a slightly improve-
ment in accuracy when the red-edge band was considered for 
particular land covers. In contrast to the previous studies on 
this topic, our study provides a conservative view of the broad-
band red-edge band and offers a different perspective on red- 
edge classification accuracy. Following experimentation, we 

Table 9. Result of three categories with and without the red-edge band.

Classifier No. of bands Water Bare earth Vegetation OA Kappa σkappa Z-test

MLC 4 100.00 94.61 99.86 98.38 0.97 0.0014 α < 0.05
5 100.00 96.20 99.97 98.90 0.98 0.0011

SVM 4 100.00 98.35 99.34 99.23 0.99 0.0000 α > 0.05
5 100.00 98.35 99.34 99.23 0.99 0.0010

ISODATA 4 100.00 69.27 93.94 86.50 0.79 0.0037 α < 0.05
5 100.00 60.80 89.04 80.96 0.71 0.0042

Kmeans 4 100.00 83.30 99.63 94.39 0.91 0.0025 α > 0.05
5 100.00 84.31 98.94 94.54 0.92 0.0025

Table 10. Result obtained with four categories, with and without the red-edge band.

Classifier No. of bands Water Bare earth Rice paddies Peanut OA Kappa σkappa Z-test

MLC 4 100.00 70.42 63.47 86.72 75.10 0.67 0.0057 α < 0.05
5 100.00 71.59 66.50 87.27 77.00 0.69 0.0057

SVM 4 100.00 82.64 62.71 84.29 80.06 0.73 0.0055 α < 0.05
5 100.00 70.42 63.47 86.72 81.77 0.76 0.0055

ISODATA 4 100.00 68.42 3.64 58.13 66.05 0.54 0.0053 α < 0.05
5 100.00 64.29 2.08 60.94 63.17 0.50 0.0054

Kmeans 4 100.00 68.39 3.64 58.14 66.05 0.54 0.0053 α < 0.05
5 100.00 66.72 2.12 59.38 63.36 0.50 0.0054
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identified an issue with selecting the broadband red-edge by 
providing solid proof. This study demonstrated that the effec-
tiveness of red-edge classification accuracy apparently 
depends on the investigated land-use class. The conclusions 
and suggestions are summarized as follows:

(1) During the evaluation of factor loadings by means of 
PCA, the contribution of the red-edge band to the cate-
gorization of vegetation was considered more important 
than that of the visible bands. The contribution of the 
red-edge band was similar to that of the NIR band.

(2) The classification of VIs by using the red-edge band can 
effectively separate vegetation and non-vegetation 
regions. The OA was found to be higher than 90%. 
These results indicated that the CMFI, NDVI, and MCARI 
were relatively high-precision VIs. By using the red-edge 
band instead of NIR in the NDVI and CMFI, the OA of rice 
paddy classification can be improved by 6–7%.

(3) Based on the accuracy analysis results of land cover classi-
fication, SVM was considered more accurate than MLC, 
ISODATA, and K-means. The red-edge band improved the 
accuracy of peanut classification by approximately 2%. 
Regardless of the red-edge band usage, the performance 
of SVM was approximately 5% better than that of the MLC.

This study focused on the availability of the broadband red- 
edge from RedEdge. Results can be better interpreted by using 
the narrow-band red-edge compared to the broadband red- 
edge. Therefore, our future research will aim at analyzing the 
four narrow red-edge bands from Sentinel-2. Moreover, there 
have only been a few studies that have applied spectral simula-
tion for RapidEye and Sentinel-2 spectral datasets. Our future 
work will also analyze the effectiveness of the red-edge band 
on real and spectral simulation datasets.
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