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Abstract: Automatic building change detection is essential for updating geospatial data,
urban planning, and land use management. The objective of this study is to propose a
transformer-based UNet-like framework for end-to-end building change detection, inte-
grating multi-temporal and multi-source data to improve efficiency and accuracy. Unlike
conventional methods that focus on either spectral imagery or digital surface models
(DSMs), the proposed method combines RGB color imagery, DSMs, and building vector
maps in a three-branch Siamese architecture to enhance spatial, spectral, and elevation-
based feature extraction. We chose Hsinchu, Taiwan as the experimental site and used
1:1000 digital topographic maps and airborne imagery from 2017, 2020, and 2023. The
experimental results demonstrated that the data fusion model significantly outperforms
other data combinations, achieving higher accuracy and robustness in detecting building
changes. The RGB images provide spectral and texture details, DSMs offer structural
and elevation context, and the building vector map enhances semantic consistency. This
research advances building change detection by introducing a fully transformer-based
model for end-to-end change detection, incorporating diverse geospatial data sources, and
improving accuracy over traditional CNN-based methods. The proposed framework offers
a scalable and automated solution for modern mapping workflows, contributing to more
efficient geospatial data updating and urban monitoring.

Keywords: buildings; change detection; deep learning; map updating

1. Introduction
1.1. Motivation

Rapid urbanization has significantly increased the demand for frequent map updates,
particularly in urban areas where construction and demolition occur frequently. Accurate
and up-to-date building maps are essential for effective urban management. However,
manually updating these maps is a labor-intensive and time-consuming process [1,2]. A
more efficient approach for map updating could be focusing on changed areas. Advance-
ments in geospatial mapping technologies have introduced automated and semi-automated
processes, which show significant potential to improve map production processes. For
instance, high-resolution remote sensing images from satellite or aerial photography can
provide extensive coverage. Therefore, change detection techniques can be applied to iden-
tify hotspots that require updates, thereby enhancing the efficiency of urban maintenance
and management efforts. The study [3] proposed a change detection-assisted mapping
workflow and compared it with manual mapping efforts. The study demonstrated that
incorporating change detection techniques significantly reduced mapping time while also
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leading to slight improvements in the accuracy and quality of map updates. These findings
show the potential of automated methods to enhance traditional mapping workflows,
making them more efficient and scalable for large-scale urban environments.

1.2. Previous Studies

Modern change detection techniques have increasingly embraced machine learning
approaches. The research [4] undertook a comprehensive review, tracing its evolution from
early perceptron to the adoption of deep learning (DL) recently for remote sensing tasks.
There has been a significant surge in publications related to DL in remote sensing since
2015 [5]. This growth can be mainly attributed to rapid advancements in convolutional
neural network (CNN) architectures, which have dramatically improved the ability to
analyze complex large-area remote sensing data. Among the most notable achievements
has been performing very high-resolution (VHR) imagery semantic segmentation with
remarkable precision.

In [6], Si Salah et al. highlighted the capacity and applications of change detection
techniques in remote sensing. The authors stated that change detection techniques cannot
effectively address complex remote sensing tasks without a well-designed workflow. Sev-
eral critical dimensions, including input data, analysis units, targets, change categories,
and temporal resolution, must be considered (Table 1).

Table 1. Dimensions in change detection [6].

Dimensions Instance Characteristic

Input data

Vector Vector to raster conversion

Raster
Color mode,

spectral resolution,
spatial resolution

Analysis unit
Pixel Compare image pixels

Object Compare groups of
contiguous pixels

Target

Buildings Instance segmentation,
semantic segmentation,
panoptic segmentation

Vegetation

Everything

Change categories

Binary Changed/unchanged

Multi-class
Unchanged/new/destroyed/

partially
changed/modification

Temporal
resolution

Bi-temporal Two time epochs

Multi-temporal Series of time epochs

Operator

Statistical analysis Calculating
indices/statistical test

Computer vision Color/texture/shape

Machine learning SVM/deep learning

Semantic segmentation techniques have been widely used in image recognition. Ap-
plying such techniques for building change detection using aerial imagery enhances au-
tomation and accuracy. For instance, Ref. [4] used CNNs to detect building changes from
high-resolution aerial imagery. Their results demonstrated that DL techniques can ac-
curately identify change areas in images acquired at different time points. Furthermore,
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Ref. [7] employed semantic segmentation to monitor urban development; the authors
highlighted the superior performance of DL techniques in extracting building boundaries
and classifying objects. These studies underscore the advantages of semantic segmentation
in handling large-scale and complex imagery, particularly when images contain multiple
object types.

The essential process of change detection algorithms involves extracting high-quality
features and comparing their differences to identify areas of change. In [8], Jiang et al.
systematically reviewed change detection methods for aerial imagery. Their analysis
of 116 studies revealed the primary network architectures used for change detection,
which included CNNs, generative adversarial networks (GANs), autoencoders (AEs), and
recurrent neural networks (RNNs). Among these, CNNs are the most commonly used
architecture, accounting for 62% of the studies, underscoring their widespread application
in image change detection tasks. The popularity of CNNs can be attributed to their strengths
in image processing and feature extraction. Moreover, 17% of the studies have used RNNs
and GANs, indicating their specific applications in change detection. RNNs are typically
employed for temporal data analysis, while GANs are used to generate and synthesize
images to facilitate detection. AEs have been the least utilized; only 4% of studies have used
this architecture, possibly due to their primary use in data compression and dimensionality
reduction, which limits their broader application in change detection tasks.

Integrating different data sources, such as digital surface models (DSMs), with other
optical imagery is crucial for improving change detection methodologies. DSMs provide
elevation information that helps distinguish between buildings and ground features. For
instance, Ref. [9] demonstrated the effectiveness of combining optical imagery with DSM
data for building change detection; the authors revealed that including elevation infor-
mation significantly enhanced the accuracy of identifying newly constructed buildings.
Integrating multi-source data enables models to better recognize building changes over
time, thus improving the overall reliability and precision of change detection tasks.

In this context, Siamese architecture offers a powerful approach to data fusion in
change detection. In [10], Daudt et al. conducted experiments using a fully convolutional
network to integrate RGB and synthetic aperture radar (SAR) imagery. They proposed three
architectures: fully convolutional early fusion, fully convolutional Siamese concatenation,
and fully convolutional Siamese difference. Among these, Siamese architectures stand out
due to their ability to process two inputs through identical network branches with shared
weights. This design ensures consistent feature extraction across both inputs, reducing bias
and ensuring that the focus is on meaningful changes during comparison. The explicit
comparison step inherent in Siamese architectures is particularly advantageous for multi-
source data fusion, as it highlights differences between inputs and improves the sensitivity
to subtle variations.

However, Ref. [11] highlighted the limitations of traditional two-dimensional (2D)
change detection approaches, which mainly focus on detecting planimetric changes. The
2D change detection proved insufficient for applications requiring volumetric or topo-
graphic analysis, such as urban development monitoring, forest biomass estimation, or
landform alteration [12,13]. The authors solved the issue by incorporating multi-source
remote sensing data, such as optical, DSM, and SAR imagery into semantic segmentation
models. The fusion of these data sources, combined with the robust feature extraction
and comparison capabilities of Siamese architectures, represents a significant step forward
in improving the precision and applicability of change detection in complex urban and
environmental contexts.

Although CNNs have been widely and successfully applied in DL for image analysis, a
notable limitation is that they treat all regions equally during convolution, focusing only on
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global feature extraction. To overcome this issue, the vision transformer (ViT), introduced
by [14], employs a self-attention mechanism that simultaneously considers both global
and local features. A major breakthrough in transformer-based image segmentation was
TransUNet [15], which demonstrated that the transformer-based model beat traditional
CNN-based architectures in medical image segmentation. The success of TransUNet laid
the foundation for transformer-driven image semantic segmentation models. According to
a review by [16], numerous models derived from the ViT architecture have been developed
and applied to various data sources, such as SAR images, hyperspectral images, and VHR
images. These models can perform tasks such as image classification, object detection, and
change detection. The ViT’s superior ability to extract fine-grained features allows it to
detect subtle changes in imagery.

When it comes to the applications of transformers in change detection, Ref. [17]
proposed the bi-temporal image transformer (BIT) model, which replaced the transformer
architecture as the traditional UNet bottleneck feature analyzer. In the BIT model, ResNet18
is employed for feature extraction, while the transformer structure focuses on analyzing
features and contextual relationships between bi-temporal images. This hybrid approach
effectively combines the strengths of both methods, with CNN excelling in capturing fine-
grained spatial features and transformers, thus yielding superior contextual understanding.
ChangeFormer [18] is a bi-temporal change detection framework that uses a Siamese
transformer as the encoder and a multi-layer perceptron (MLP) as the decoder. The
hierarchical multi-layer features serve as the optimal distance metrics between the features
extracted from bi-temporal images to effectively form representations. The MLP decoder
then performs upsampling and classification tasks. The authors compared the proposed
method with the BIT model and demonstrated that their approach outperformed BIT. The
results indicated that transformers deliver superior performance as feature encoders rather
than decoders in hybrid models. This finding suggests that transformers excel at capturing
and processing complex spatial and temporal relationships in input data. At the same
time, simpler decoders such as MLPs can efficiently handle subsequent upsampling and
classification stages. Pure transformer-based models, such as SwinSUNet [19], are built
upon the Swin transformer [20], incorporating a windows-based multi-head self-attention
(W-MSA) mechanism. This design allows the model to efficiently process input images at
multiple scales, making it adaptable to varying image resolutions. The flexibility of the
Swin transformer makes it an ideal choice for tasks involving diverse input sizes, such
as training on small images (e.g., 512 × 512) and predicting on larger images (e.g., 1024
× 1024). For our research, this scalability proved particularly advantageous because, in
VHR images, buildings often span multiple small image patches. The Swin transformer’s
hierarchical design effectively addresses this challenge by enabling the model to process
local details and broader contextual information seamlessly.

The research [21] further advanced transformer-based architectures by introducing
UNetFormer and FT-UNetFormer for efficient semantic segmentation on multiple datasets.
The key distinction between these models lies in their encoder structure. UNetFormer uses a
hybrid CNN-Transformer encoder, while FT-UNetFormer is fully transformer-based. Their
study compared SwinUNet and TransUNet with their proposed methods, highlighting
that both SwinUNet (41.1 M parameters) and TransUNet (90.7 M parameters) require
significantly larger model sizes, whereas UNetFormer achieves better mean intersection
over union (mIoU) scores with only 11.7 M parameters. Although the exact model scale of
FT-UNetFormer was not specified (14.2 M parameters in our case), the study considered it as
a potentially more powerful fully transformer-based model. The Swin transformer further
improves the architecture by incorporating multi-level feature extraction to accommodate
multi-scale variations. This enables the model to extract features at different scales, which is
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crucial for detecting objects of varying sizes and shapes, such as buildings in aerial imagery.
In addition to the enhanced encoder, the decoder is also designed based on the ViT structure,
enabling the analysis of both global and local features. The decoder employs upsampling
and feature reconstruction, facilitating the connection of high-dimensional features and
allowing the effective fusion of semantic contextual information from surrounding areas.
This enhanced feature integration improves the accuracy of change detection. Given these
advantages, FT-UNetFormer was chosen for this study due to its efficiency, scalability, and
improved feature extraction capabilities. It provides a balance between computational cost
and model performance, making it an ideal choice for large-scale urban monitoring and
geospatial data analysis.

1.3. Objectives and Contributions

This study aimed to develop an end-to-end deep learning framework for building
change detection to facilitate map updating. The proposed method uses DL techniques to
extract deep features from multispectral images, elevation models, and existing building
polygons for accurate and efficient building change detection. The architecture is based on
FT-UNetFormer, which integrates the strengths of the UNet structure for precise localization
and the transformer mechanism for global context modeling. This data fusion approach
enables the model to capture both fine-grained spatial details and long-range dependencies,
enhancing the accuracy of detecting newly constructed, modified, and demolished build-
ings. This study’s contribution is streamlining the process of building change detection by
experimenting with different input data combinations and evaluating model performance.
By enhancing prediction accuracy and reliability, this study addresses the challenges of
timely and accurate map updating, thus providing valuable support for urban planning
and management. The aforementioned details have been summarized in Table 2, which
demonstrates the design of the research.

Table 2. Dimensions of the proposed change detection scheme.

Dimensions Instance Characteristic

Input data

Vector 1/1000 scale building map
polygons

Raster

Color mode: RGB
Elevation mode: DSM

Spatial resolution: 10 cm

Spatial resolution: 8 bit, 16 bit

Analysis unit
Pixel Accuracy, precision, recall, F1 score

Object Precision, recall, F1 score,
Object area distribution analysis

Target Buildings Semantic segmentation

Change categories Multi-class Deconstruction, construction,
no change, non-building

Temporal
resolution Bi-temporal 2017–2020 (train/val.)

2020–2023 (test)

Operator Machine learning FT-UNetFormer

The major contribution of this study is the extension of FT-UNetFormer from building
detection to building change detection, enabling an end-to-end architecture that directly
identifies changed areas. Additionally, this study evaluates the performance of building
change detection using various data fusion approaches. This research addresses key gaps
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in the field, as most existing methods primarily rely on a single data type, such as spectral
imagery, while fusion-based approaches integrating spectral imagery with DSM remain
limited. To enhance efficiency and accuracy, this study introduces a novel approach by
integrating three diverse data types—RGB imagery, DSM, and building maps—into a
unified one-stage change detection model.

2. Materials and Methods
2.1. Materials and Study Area

The experimental area for this study is located in the East District of Hsinchu City,
Taiwan, an urban region characterized by rapid infrastructure development and frequent
changes in the built environment. This dynamic setting provided a suitable context to
evaluate the effectiveness of the proposed building change detection method.

To support the analysis, multi-temporal aerial imagery was acquired in 2017, 2020, and
2023. These 10 cm high-resolution aerial images were supplemented with corresponding
1:1000 digital topographic maps, including building polygon layers. The availability of
multi-year datasets enabled us to comprehensively assess the model’s ability to detect
newly constructed, modified, and demolished buildings over time. Table 3 provides a
detailed summary of the aerial imagery and the associated topographic maps, including
information on the acquisition dates, spatial resolution, and relevant metadata. Figure 1
presents examples of the aerial images and corresponding building map polygons from
2017, 2020, and 2023. Two areas have been marked to emphasize the specific building
change events: changes between 2017 and 2020 have been highlighted in red and those
from 2020 to 2023 have been marked in orange.

Table 3. A summary of the parameters used in building change detection dataset.

2017 2020 2023

Number of images 491 293 201
Sensor DMC II DMC II DMC III

Avg. flight height 1280 m 1540 m 2240 m
Avg. spatial resolution 7.83 cm/pixel 9.39 cm/pixel 9.48 cm/pixel
Number of buildings 99,167 polygons 100,125 polygons 101,184 polygons
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The total coverage area spans 3552 hectares, distributed across 74 sheets of 1:1000
topographic maps. Each map sheet corresponds to a specific geographic section of the test
area; this enabled the precise alignment of image data and vector building maps for training
and validation purposes. Integrating aerial imagery with topographic maps enhanced
the model’s spatial analysis and change detection capacity. Figure 2 presents the spatial
distribution of the 74 topographic map sheets, offering a visual overview of the study area
and its partitioning into smaller mapping units.
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2.2. Data Preprocessing

Data preprocessing is a crucial step in preparing input data for the deep learning-
based building change detection model. This process includes generating DSMs and true
orthophotos from aerial images, converting building vector polygons to raster data, and
creating training datasets for the DL model. These preprocesses involve the following
steps:

1. Generation of DSMs and true orthophotos. High-resolution DSMs and true orthopho-
tos are generated through dense image matching to eliminate distortions and ensure
accurate alignment. Traditional orthophotos (Figure 3a) are corrected using a digital
terrain model (DTM), which only accounts for ground elevation. However, this ap-
proach does not consider the relief displacement caused by elevated structures such as
buildings, leading to positional distortions in building outlines. This study adopts the
image dense matching technique to generate a DSM that accurately represents surface
elevation, including buildings, trees, and other structures. The DSM is then used
to produce a true orthophoto (Figure 3b) [22,23], which provides a full nadir view,
thereby eliminating the relief displacement of buildings. This process involves robust
aerial triangulation, aligning images across different time periods using a consistent
set of ground control points (GCPs) to ensure precise alignment of multi-temporal
datasets. The aerial images used are cloud-free, ensuring clear and accurate data. Ad-
ditionally, a mosaic image is generated by combining multiple source images captured
from different viewpoints. This mosaic reconstruction effectively eliminates occluded
regions, enhancing the completeness and reliability of the dataset. Consequently,
the building edges are more precisely aligned, which improves the spatial accuracy
of change detection. Figure 3c illustrates the differences between traditional and
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true orthophotos by overlaying their respective color bands. This visual comparison
highlights the positional shifts caused by relief displacement, which can be effectively
resolved in true orthophotos. The DSM (Figure 3d) is created using the image dense
matching method, which identifies corresponding points between multi-view aerial
images to calculate elevation values. Unlike a DTM, which only represents bare earth,
a DSM considers all objects’ surface heights, including buildings and vegetation. The
DSM plays a vital role in data preprocessing by providing critical elevation informa-
tion for building change detection. It identifies changes in building height and helps
differentiate newly constructed buildings from existing structures.

2. By refining building edges and ensuring precise spatial alignment, this methodology
significantly improves the accuracy of change detection, minimizing errors caused
by inconsistencies in aerial image acquisitions over time. Figure 3c illustrates the
differences between traditional and true orthophotos by overlaying their respective
color bands. This visual comparison highlights the positional shifts caused by re-
lief displacement, which can be effectively resolved in true orthophotos. The DSM
(Figure 3d) is created using the image dense matching method, which identifies cor-
responding points between multi-view aerial images to calculate elevation values.
Unlike a DTM, which only represents bare earth, a DSM considers all objects’ surface
heights, including buildings and vegetation. The DSM plays a vital role in data pre-
processing by providing critical elevation information for building change detection.
It identifies changes in building height and helps differentiate newly constructed
buildings from existing structures.

3. Vector-to-raster conversion. Digital building map (DBM) vector data are converted
into raster format to meet the input requirements of the DL model, ensuring con-
sistency in data representation. DBMs contain vectorized building footprints from
previous periods and serve as reference layers to highlight regions where changes
have occurred. To ensure accurate feature extraction, DBMs are first aligned to the
corresponding map frame and then converted to raster format with the same spatial
resolution (i.e., 10 cm). This process preserves high-resolution details while main-
taining computational efficiency, providing a balance between processing speed and
sufficient spatial context for precise change detection.

4. Training dataset preparation. Multi-temporal datasets, including RGB imagery, DSMs,
and building maps, are carefully organized and labeled to create training and vali-
dation datasets suitable for the model’s learning process. The dataset is divided into
two pairs, 2017–2020 and 2020–2023, to evaluate the performance across different
time intervals. The 2017–2020 dataset is used for training and validation, allowing
the model to learn and optimize itself to detect changes. Meanwhile, the 2020–2023
dataset is reserved as an independent test set, serving as a new temporal pair to assess
the model’s generalization capability and robustness in identifying building changes
over a different temporal interval.

Data augmentation techniques, such as random rotations, flips, color, and brightness
adjustments, were applied to enhance model robustness and generalization. This data
preparation approach ensured that the model was exposed to diverse input conditions,
allowing it to effectively identify building changes in wide-ranging environmental and
temporal scenarios. Figure 4 presents an example patch of the RGB, DSMs, and DBMs
for 2017, 2020, and 2023, illustrating the elevation and spectral differences that the model
learned to identify. This specific patch showcases significant changes across the dataset time
periods, which are marked with red and black blocks to highlight areas of transformation.
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2.3. Methodology

This study employed an end-to-end deep learning semantic segmentation technique to
detect areas of building change. The end-to-end approach is a one-step process that directly
identifies building changes from multi-temporal datasets. In contrast, the non-end-to-end
approach is a two-step process that first detects buildings separately for two periods and
then compares the results to determine building changes. Since the end-to-end approach
optimizes features specifically for change detection, it is expected to deliver better results
compared with the non-end-to-end approach. In this study, orthorectified imagery from
two time periods, DSMs from both periods, and building polygons from the earlier period
were employed in the change detection process. Features were extracted and encoded
using the transformer, and the changes were decoded and classified into three categories:
unchanged, newly constructed, and demolished building areas. The overall workflow of
the study is illustrated in Figure 5.
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Figure 5. An end-to-end building change detection workflow.

The FT-UNetFormer, as depicted in Figure 6a, is a UNet-like architecture that is
entirely made up of transformer-based components, making it a novel and highly effective
model for various segmentation tasks. Unlike conventional UNet models that rely on
the CNN structure for feature extraction, FT-UNetFormer leverages the Swin transformer
as its encoder, thus yielding a more robust mechanism for balancing global and local
feature extraction. The decoder adopted by this study was a global–local transformer
block (GLTB) structure, which introduces a self-attention mechanism to effectively capture
both local and global contexts. Three input datasets from two periods were used to fuse
features from different datasets. Since some modifications had to be made to the model, we
transformed the architecture into a three-branch Siamese structure to accommodate our
dataset, as illustrated in Figure 6b. This modification enabled the model to process RGB,
DSMs, and building polygons simultaneously, thereby maintaining the essential temporal
comparison for the change detection task. We standardized the input shape and band
composition to ensure compatibility and consistency across all the input data combinations,
as detailed in Table 4. This approach allowed the model to effectively fuse multi-source
and bi-temporal information, enhancing its ability to detect subtle changes with greater
accuracy and robustness.
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Table 4. Input band composition.

Brand 1 Brand 2 Brand 3

Image Image DSM Building Map

Case 1. RGB_DSM RGB (t1)
(3 bands)

RGB (t2)
(3 bands)

DSM (t1), DSM (t2),
DiffDSM (3 bands) -

Case 2. RGB_Map RGB (t1)
(3 bands)

RGB (t2)
(3 bands) - Building map (t1)

(1 band × 3)

Case 3. RGB_DSM_Map RGB (t1)
(3 bands)

RGB (t2)
(3 bands)

DSM (t1), DSM (t2)
(2 bands)

Building map (t1)
(1 band)

The training process was run on an RTX Titan GPU (24 GB VRAM) to handle the
computational demands of complex model structures and data combinations.

Table 5 highlights the hyperparameters used for training, which include essential
configurations such as learning rate, batch size, and optimization strategy, ensuring the
model’s convergence during training. These parameters were initially derived from the
original FT-UNetFormer training script for the ISPRS Vaihingen dataset and were subse-
quently fine-tuned through empirical experimentation to optimize performance for this
study.

Data augmentation was applied dynamically during the batch loading phase to en-
hance the model’s generalization robustness and prevent overfitting. The augmentation
strategies, outlined in Table 6, included operations such as rotation, flipping, color, and
brightness adjustment. These transformations enriched the training dataset by introducing
variability in the input data, allowing the model to learn robust representations and become
resilient to variant in orientation, scale, and lighting conditions.



Buildings 2025, 15, 695 12 of 27

Table 5. Training hyperparameters.

Parameters Value

Input size 512 × 512 pixel
Batch size 8

Training epochs 50
Learning rate 3 × 10−4

Weight decay 1 × 10−4

Backbone learning rate 1 × 10−4

Backbone weight decay 3 × 10−5

Best model monitor Validation mIoU
Loss function SoftCrossEntropy + DiceLoss

Table 6. Data augmentation during training.

Transform RGB DSM DBM

Color shift hue −0.1~0.1 - -
Brightness shift −0.1~0.1 −0.5~0.5 -

Rotation −30~30◦ −30~30◦ −30~30◦

Flip Vertical and horizontal Vertical and horizontal Vertical and horizontal

3. Results and Evaluations
The performance of the three models (i.e., RGB_DSM, RGB_Map, and RGB_DSM_Map)

on the independent test dataset (i.e., 2020–2023), using two types of analysis units (pixel-
based and object-based evaluations), was evaluated, the results of which will be provided
in this section. Pixel-based analysis assessed the accuracy of each individual pixel, whereas
object-based analysis evaluated the accuracy of each changed unit. The former focused
on metrics such as accuracy, precision, recall, and F1 score to assess the effectiveness of
different data fusion strategies in capturing building changes; on the other hand, the latter
analyzed groups of pixels to calculate the precision, recall, and F1 score, including the
distribution of object areas, offering more profound insights into the potential for building
change detection.

Table 7 presents the results of pixel-based analysis of the overall macro statistics
evaluation of the training and validation datasets (i.e., 2017–2020) after the three training
processes. The accuracy values across all three models indicate a highly reliable detection
capability, with the RGB_DSM_Map model achieving the highest score of 99.74%. The
precision and recall values suggest that each model effectively balanced the identification
of true positive (TP) and false positive (FP) instances. As a result, we considered three
models that converged to a stable status.

Table 7. Evaluation of the three models using validation datasets (2017–2020).

Statistic Metric RGB_DSM RGB_Map RGB_DSM_Map

Accuracy 98.58% 99.46% 99.74%
Precision 89.28% 74.54% 86.19%

Recall 87.38% 87.55% 92.98%
F1 score 88.30% 79.19% 89.14%

3.1. Evaluation of the Test Dataset

Table 8 presents the overall macro statistics evaluation of the individual test datasets
(2020–2023) after the three training processes. The assessment reveals that RGB_DSM_Map
was the most balanced and robust model; it excelled in precision, recall, and F1 score due
to the fusion of RGB, DSM, and DBM inputs. The RGB_DSM performed well in precision
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but struggled with recall, while RGB_Map achieved the highest accuracy but fell short in
recall and precision for complex scenarios. Overall, integrating diverse data sources in
RGB_DSM_Map proved to be the most effective approach for change detection.

Table 8. Evaluation of the three models using individual test datasets (2020–2023).

Statistic Metric RGB_DSM RGB_Map RGB_DSM_Map

Accuracy 96.75% 99.25% 99.56%
Precision 90.79% 72.21% 84.40%

Recall 63.94% 67.99% 82.17%
F1 score 69.95% 67.42% 82.94%

Figures 7–9 demonstrates a representative region exhibiting the three types of changes,
allowing a comparison of the distinct contributions of the DSMs and building maps. As
seen in Figures 7a, 8a and 9a, the deconstruction areas appeared unclear, but the inclusion of
elevation information of the DSMs distinctly highlighted the construction areas. In contrast,
the opposite characteristic can be observed in Figure 7b, Figure 8b, and Figure 9b, where
the building map effectively captured the deconstruction areas that the DSMs struggled to
identify. This observation highlights the complementary information provided by DSMs
and the building polygons. Figure 7c, Figure 8c, and Figure 9c reinforce this synergy, as the
fusion of DSMs and the building polygons produced a superior result, where the strengths
of both data sources were combined for more comprehensive building change detection.
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3.2. Pixel-Based Evaluation

The performance of the three models through pixel-based evaluation was assessed, and
the results will be detailed in this section. The confusion matrix and statistic metrics of the
three different input data combination models were evaluated, such as accuracy, precision,
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recall, and F1 score in Table 9, Table 10, and Table 11. By analyzing how each model
predicted different change categories, including non-building, deconstruction, construction,
and no change, we gained insights into the models’ strengths and limitations in building
change detection.

Table 9. Pixel-based evaluation: confusion matrix and metrics for the RGB_DSM model.

RGB_DSM
Ground Truth Label

Non-Building Deconstruction Construction No Change

Prediction

Non-building 1,619,265,182 1,345,845 1,224,553 22,211,203

Deconstruction 7,249,205 3,864,419 77,089 1,330,942

Construction 7,874,732 50,889 6,923,744 1,205,508

No change 105,352,114 662,825 1,768,669 536,774,162

Accuracy 93.73% 99.54% 99.47% 94.28%

Precision 93.08% 65.23% 69.28% 95.59%

Recall 98.49% 30.86% 43.13% 83.28%

F1 score 95.71% 41.90% 53.16% 89.01%

Table 10. Pixel-based evaluation: confusion matrix and metrics for the RGB_Map model.

RGB_Map
Ground Truth Label

Non-Building Deconstruction Construction No Change

Prediction

Non-building 1,642,076,980 5,749,434 2,727,417 695,460

Deconstruction 390,948 6,869,497 1021 5,270,367

Construction 12,363,996 88,746 3,601,456 675

No change 698,607 7,953,613 16,328 636,514,232

Accuracy 99.03% 99.16% 99.35% 99.37%

Precision 99.19% 33.25% 56.75% 99.07%

Recall 99.45% 54.82% 22.43% 98.66%

F1 score 99.32% 41.39% 32.15% 98.86%

Table 11. Pixel-based evaluation: confusion matrix and metrics for the RGB_DSM_Map model.

RGB_DSM_Map
Ground Truth Label

Non-Building Deconstruction Construction No Change

Prediction

Non-building 1,642,078,698 2,022,068 2,681,525 1,366,925

Deconstruction 27,711 9,093,617 10,797 3,399,708

Construction 6,857,917 26,255 9,164,715 5986

No change 470,411 2,959,945 475,486 940,903,605

Accuracy 99.42% 99.64% 99.57% 99.63%

Precision 99.55% 64.49% 74.31% 99.26%

Recall 99.63% 72.56% 57.08% 99.39%

F1 score 99.59% 68.29% 64.57% 99.33%

Upon comparing RGB_DSM and RGB_Map, we found that both models performed
well in non-building and no change categories. The RGB_Map model achieved higher
precision and recall because of its reliance on building maps. Moreover, it exhibited better
deconstruction change identification. The RGB_DSM model performed better in detecting
construction changes because of its elevation information. When evaluating FPs and false
negatives (FNs), the RGB_Map model tended to misclassify the deconstruction areas as
either non-building or no change. As for the RGB_DSM model, it performed better in
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recognizing both deconstruction and construction changes. However, when it came to
the no change category, the RGB_Map model outperformed RGB_DSM. RGB_DSM_Map,
integrating the three input data, combined the strengths of both approaches. Adding DSM
data to the building map enhanced the model’s ability to distinguish elevation-related
changes, while the map provided semantic context for improved localization.

Among the three models, the RGB_DSM_Map model showed the highest accuracy
in all classes. Integrating DSMs and building maps effectively addressed the weaknesses
in the other models, particularly for detecting construction and deconstruction areas. The
results reveal that fusing multiple data sources significantly enhanced the model’s ability
to identify building changes and improve reliability. In this section, it was demonstrated
that the RGB_DSM_Map combination outperformed the other two models. Consequently,
in the next section, we will focus on evaluating the changed units from the RGB_DSM_Map
model using object-based analysis.

3.3. Object-Based Evaluation

Object-based evaluation involves grouping the detected changes and comparing them
with the ground truth. This method provided a more detailed analysis of the model’s
performance by focusing on individual changes, allowing us to identify strengths and
weaknesses in specific scenarios. By examining the number of instances of TPs, FPs, and
FNs, the evaluation highlighted areas where the model accurately identified changes,
including areas where improvements were necessary, particularly when distinguishing
between subtle or overlapping change types. Figure 8 outlines the details of the evaluation
process, showcasing how the ground truth labels (Figure 10a) were compared with the
predicted results (Figure 10b). This study classified the evaluation results (Figure 10c) into
three categories:

1. A prediction was classified as a TP when the detected change aligned correctly with
the ground truth label. For instance, if the model predicted “deconstruction” for a
region where the ground truth also indicated “deconstruction”, this was considered a
correct detection, a TP.

2. Conversely, an FN occurred when the model failed to detect a change present in the
ground truth. For example, if the ground truth indicated “construction” in a specific
area but the model predicted “non-building”, the change was overlooked, resulting in
an FN.

3. Finally, an FP instance occurred when the model incorrectly predicted a change that
did not exist in the ground truth. Examples of this included predicting “construction”
for a region labeled as “non-building” or predicting “deconstruction” for an area
marked as “no change”.
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An intersection over union (IoU) threshold was applied to evaluate building change
detection. The IoU measures the ratio of the intersection area to the union area between the
predicted and ground truth regions, serving as a metric to determine whether a predicted
result is a valid indication of change. In this study, the minimum IoU threshold was set to 0.3.
The predicted result with an IoU value equal to or greater than this threshold was treated
as the major category for the object. It can be seen from Figure 11 that a deconstruction
object was successfully detected where the IoU value was 0.7, demonstrating a significant
overlap between the predicted results and ground truth. To emphasize the change areas,
we did not plot “no change” to “no change” TP in Figure 11c.
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The object-based evaluation results in Table 10 reveal the model performance. As
for the no change label, the model performed very well. The RGB_DSM_Map model
performed exceptionally well for the no change category, with a precision of 98.61%, a
recall of 99.60%, and an F1 score of 99.11%. In contrast, a higher number of FP instances in
the deconstruction category, with a lower precision of 62.49% and a substantial number
of FNs in the construction category, resulted in a recall of only 43.26%. A comparison of
the results of pixel-based (Table 11) and object-based (Table 12) evaluations revealed the
accuracy of object-based evaluation as relatively lower. Object-based evaluation treats each
changed unit as a single entity, regardless of the number of pixels within the unit. As a
result, object-based evaluation better represents the requirements for map updating.

Table 12. Confusion matrix and the evaluation metrics for object-based evaluation.

Object-Based
Evaluation

Ground Truth Label
Deconstruction Construction No Change

TP_object 1611 1075 9528
FP_object 967 392 134
FN_object 5 1410 38
Precision 62.49% 73.28% 98.61%

Recall 99.69% 43.26% 99.60%
F1 Score 76.82% 54.40% 99.11%

The accuracy of the changed unit is highly related to the size of the changed unit.
Figure 12 shows the histogram of the changed unit area for different classes. The Q25,
Q50, and Q75 represent the 25th percentile (lower quartile), 50th percentile (median), and
75th percentile (upper quartile), respectively, providing a summary of the data distribution.
Table 13 provides a statistical analysis of the median area of each class of the changed units.
The deconstruction FPs had a median area of 4.89 m2, indicating that the model sometimes
misclassified small insignificant changes as deconstruction events. On the other hand,
the construction FNs had a median area of 7.46 m2, suggesting that the model struggled
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to effectively detect small-scale construction events. As for the no change category, the
high precision and recall, coupled with a median area of 195.14 m2 for TPs, indicate the
robustness of the model in identifying stable regions.
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Table 13. The median value of the changed units over the evaluation results of the three labels.

Object Area (m2)
Ground Truth Label

Deconstruction Construction No Change

TP_median 8.36 23.37 195.14
FP_median 4.89 0.05 0.08
FN_median 0.06 7.46 0.06

These findings highlight the challenges of detecting small-scale changes, particularly
in complex urban environments where subtle variations in features such as elevation and
spectral signatures can complicate classification. The excellent performance for the no
change label underscores the reliability of the model for stable areas, but the commission er-
rors for deconstruction and omission errors for construction suggest that further refinement
is needed to enhance the model’s sensitivity to smaller objects.

4. Discussion
In this section, the following three unusual phenomena observed in the change de-

tection results, as shown in Figure 10, will be discussed: the large median area for decon-
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struction FPs, the high median area for construction FNs, and the abnormal Q75 value for
no change FPs. The specific areas were identified, and their properties were analyzed, as
detailed in the following section. These three cases highlight potential factors that may
affect the accuracy.

4.1. Deconstruction: False Positives

This dataset exhibited a common issue where the “deconstruction” label was often
applied before the work was actually completed. In other words, there was no visible
change between the aerial photos captured in 2022 and 2023, yet the ground truth labeled
these areas as “changed” prior to actual deconstruction. For instance, Figure 13a shows a
residential building that had not yet been demolished but was labeled as “deconstruction”.
Similarly, Figure 13b illustrates a case where a building area was acquired for road construc-
tion, presenting the same labeling discrepancy. We hypothesize that, once a demolition
project is submitted to government authorities, the entire area is preemptively labeled as
“deconstruction” during mapping, which potentially explains the observed FPs.
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Case 2.

4.2. Construction: False Negatives

The discrepancy between the building polygons in the map and the aerial true photo
significantly affected the change detection accuracy. Figure 14a shows that an area under
construction was already digitized as a building, which led the model to falsely classify
it as “no change”. Conversely, Figure 14b shows a completed construction that was not
digitized as a building, resulting in an erroneous classification of “construction”. The time
discrepancy between the data sources introduced ambiguous or incorrect information that
disrupted the model’s classification logic.
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Figure 14. The building map and aerial images were not created at the same time, leading to
inaccurate results: (a) under construction but labeled as a building; (b) already constructed but not
labeled as a building; (c) building objects that existed but were not digitized at the previous map; and
(d) rain shelters that existed but were not digitized at the previous map.

Another issue arose from the differing mapping criteria, as illustrated in Figure 14c,d.
In these cases, the “construction” label was not associated with an actual change in the
building structure but rather with a change in the mapping criteria itself. Specifically, areas
that were not previously digitized as buildings were now classified as such, simply due to
the change in the criteria used for labeling. This discrepancy in labeling standards led to
FNs, where actual building changes were not derived because the mapping process failed
to recognize the newly designated areas as part of the construction category.

4.3. No Change: False Positive

In the “no change” FP analysis, a notable group of areas showed distributions around
the Q75. Two primary scenarios contributed to this: areas with partially demolished
buildings and areas obscured by dense vegetation, such as trees. In the first case, as
illustrated in Figure 15a, the model incorrectly classified regions as “no change” because the
buildings in these areas were not fully demolished. Small remnants of structures remained,
creating a visual ambiguity. While these remnants might not qualify as significant enough
for certain categories, their presence confused the model into thinking that no change
had occurred. The second scenario, shown in Figure 15b, involved a bus stop that was
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almost entirely covered by trees. The dense tree cover obscured the underlying structure,
making it difficult for the model to recognize changes accurately. This type of visual
obstruction demonstrates the challenges of relying solely on spectral or elevation features
when the target objects are hidden from view. Vegetation, in particular, introduces noise
into the model’s decision-making process, increasing the likelihood of FPs in areas where
no meaningful changes have occurred.
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4.4. Two-Stage vs. One-Stage Change Detections

This section evaluates the effectiveness of one-stage (i.e., end-to-end) and two-stage
(i.e., building detection then building change detection) approaches. The two-stage ap-
proach detected the building first, then compared the buildings in two periods to detect
the changed areas. The two-stage approach also used the FT-UNetFormer DL model to
train on the combined temporal dataset (i.e., 2017 and 2020) as a building detection model.
Then, the model was applied to predict building regions in the present dataset (i.e., 2023).
These detected building regions were subsequently compared with the DBM (i.e., building
polygons) in 2020 to produce change maps. Table 14 summarizes the training/validation
datasets and change detection approaches used in the experiments.

Table 14. A summary of the one-stage and two-stage change detection.

Training/Validation Change Detection
Dataset Approach

Two-Stage (RGB_Map) 2017, 2020 (RGB images) Predict 2023 buildings—2020
DBMs

One-Stage (RGB_Map) 2017, 2020 (RGB images, DBMs) Predict 2020_2023 building
change

Two-Stage (RGB_DSM_Map) 2017, 2020 (RGB images, DSMs) Predict 2023 buildings—2020
DBMs

One-Stage (RGB_DSM_Map) 2017, 2020 (RGB image, DSMs,
DBMs)

Predict 2020_2023 building
change

Pixel-based evaluation results in Figure 16 and Table 15 reveal that the one-stage
model achieved higher F1 scores (67.42% and 82.94%) compared with the two-stage ap-
proach (58.04% and 63.52%). While the overall pixel-based evaluation provided a general
comparison, it did not fully capture the performance differences within specific categories.
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To make a more detailed analysis, confusion matrices and statistic metrics in Tables 16
and 17 demonstrate that the two-stage approach showed lower accuracy than the one-stage
model in the “construction” and “deconstruction” categories. Although the recall scores for
the two-stage approach appeared relatively high, they were offset by significantly higher
FP pixel counts compared with TP pixels. This imbalance resulted in poor precision scores,
negatively affecting the F1 scores for these categories.
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Figure 16. Comparison of change detection results for the different approaches: (a) results of two-
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results of one-stage RGB_DSM_Map.

Table 15. Overall evaluation of two-stage and one-stage building change detection.

Statistic Metric Two-Stage
(RGB_Map)

One-Stage
(RGB_Map)

Two-Stage
(RGB_DSM_Map)

One-Stage
(RGB_DSM_Map)

Accuracy 96.40% 99.25% 97.63% 99.56%
Precision 56.49% 72.21% 59.72% 84.40%

Recall 81.04% 67.99% 85.96% 82.17%
F1 score 58.04% 67.42% 63.52% 82.94%

In contrast, the proposed one-stage model effectively reduced FPs and achieved a
better balance between precision and recall, leading to a superior performance in identifying
building changes. These findings highlight the advantages of the one-stage approach
in integrating building detection and change detection tasks into a unified workflow,
improving both efficiency and quality.
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Table 16. Pixel-based evaluation: confusion matrix and metrics for the two-stage RGB_Map model.

Two_Stage
(RGB_Map)

Ground Truth Label

Non-Building Deconstruction Construction No Change

Prediction

Non-building 1,603,790,373 1,207,153 42,804,843 966,732

Deconstruction 0 10,476,328 0 2,045,327

Construction 6,285,321 0 9,769,552 0

No change 18,698 113,746,732 64,377 531,352,973

Accuracy 97.79% 94.96% 97.88% 94.97%

Precision 99.61% 8.35% 18.56% 99.44%

Recall 97.27% 83.66% 60.85% 82.36%

F1 score 98.43% 15.19% 28.44% 91.09%

Table 17. Pixel-based evaluation: confusion matrix and metrics for the two-stage RGB_DSM_Map
model.

Two_Stage
(RGB_DSM_Map)

Ground Truth Label

Non-Building Deconstruction Construction No Change

Prediction

Non-building 1,615,721,627 1,110,250 30,873,589 1,063,635

Deconstruction 0 10,987,456 0 1,534,199

Construction 4,967,949 0 11,086,924 0

No change 15,685 70,695,306 67,390 574,404,399

Accuracy 98.36% 96.84% 98.45% 96.84%

Precision 99.69% 13.27% 26.38% 99.55%

Recall 98.00% 87.75% 69.06% 89.03%

F1 score 98.84% 23.06% 38.18% 94.00%

4.5. Limitations

Despite the overall effectiveness of the proposed deep learning model, several limi-
tations were observed during the experiment. These challenges primarily stemmed from
environmental factors such as shadows, occlusions, and densely packed urban structures,
which can lead to misclassification in certain scenarios:

One notable issue was occlusion and shadow. As shown in Figure 17a, a FN detection
occurred in an area between buildings due to mixed environmental factors. Shadows cast
by adjacent structures and low contrast—caused by insufficient valid image coverage—led
to misclassification. These extreme conditions reduced the model’s ability to accurately
distinguish changes, highlighting the challenges posed by shadow in aerial imagery.

Another key challenge was vegetation occlusion. Figure 17b presents a case where a
single-story building under tree cover was partially detected. While the change evaluation
identified a true positive (TP) at the lower-left block, the overall detection was significantly
impacted by the tree canopy. The building, approximately 3 m in height, was nearly
indistinguishable from the pre-existing tree cover, demonstrating the difficulty of detecting
structures occluded by vegetation.

Finally, challenges in dense urban areas also affected the model’s performance. In
highly populated residential zones, buildings were closely spaced, with minimal structural
changes over time. However, when such areas were free from the aforementioned chal-
lenges (e.g., occlusions and vegetation interference), the model performed significantly
better. Figure 17c illustrates an area with fewer obstructions, where the change detection
results exhibited high accuracy and reliability, demonstrating the model’s potential under
optimal conditions.
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5. Conclusions and Future Works
This study leveraged the advanced FT-UNetFormer architecture and multi-source

data fusion and developed and evaluated an end-to-end deep learning-based framework
for building change detection. Bi-temporal DSMs play a crucial role in building change
detection, as they directly capture elevation differences over time, making them a reliable
data source for identifying structural changes [24]. The RGB_DSM model can easily
distinguish building change areas due to the data fusion of spectral information and height
information.

Meanwhile, the building map provides a historical reference of building distribution,
helping to distinguish between newly constructed, demolished, and unchanged struc-
tures [25]. The experiment with the RGB_Map model exhibited similar characteristics,
where unchanged areas performed significantly better compared with change categories.
The F1 score comparison between RGB_DSM and RGB_Map further highlighted this trend,
with the non-building category achieving 99.32% in RGB_DSM compared with 95.71%
in RGB_Map, and the no change category scoring 98.86% in RGB_DSM versus 89.01% in
RGB_Map.

The RGB_DSM_Map model achieved superior performance in detecting building
changes across various scenarios by integrating RGB imagery, DSMs, and building maps.
The DSM component was particularly valuable in detecting changes that may not be easily
distinguishable in spectral imagery alone, such as subtle height variations associated with
partial deconstruction or new construction. The combination of RGB imagery for texture
and color, DSM for structural elevation, and building maps for historical context enabled a
more comprehensive and accurate change detection approach.

The pixel-based evaluation demonstrated the effectiveness of this approach, with
the RGB_DSM_Map model consistently outperforming other configurations in terms of
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accuracy, precision, recall, and F1 score. The overall pixel-based evaluation achieved an
F1 score exceeding 80%, and the two categories, construction and deconstruction, attained
F1 scores above 60%. Most missing objects were small ones less than 5 m2. These results
underscore the model’s robust performance in detecting building changes.

The object-based evaluations further emphasized the model’s robustness in identi-
fying subtle changes. The deconstruction category achieved an exceptionally high recall
value (>99%), largely due to the availability of previous building map information, which
provided critical context for identifying areas designated for demolition. Meanwhile, the
construction category demonstrated precision (>70%), which was attributed to the inclusion
of height information from the DSMs, thus effectively highlighting newly constructed areas.

In the comparison of the two-stage and proposed one-stage approaches, the proposed
one-stage model was an end-to-end approach that achieved higher F1 scores (67.42% and
82.94%) compared with the two-stage approach (58.04% and 63.52%). Using RGB images
and building vector maps, the one-stage method achieved an approximate 10% increase in
F1-score compared to the two-stage method. Furthermore, when employing RGB images,
DSMs and building vector map, the one-stage approach demonstrated an improvement of
about 20% in F1-score relative to the two-stage method. The effectiveness of the one-stage
method can be attributed to the integration of multi-source input data, such as RGB imagery,
DSMs, or previous DBMs simultaneously, which provided a comprehensive representation
of temporal and spatial relationships. This multi-source integration allowed the model
to capture subtle changes more accurately while maintaining efficiency in processing
large-scale datasets. The proposed one-stage model effectively reduced false positives and
achieved a better balance between precision and recall, leading to a superior performance
in identifying building changes.

In conclusion, the proposed framework streamlines the process of building change
detection, offering a reliable and efficient solution for map updating and urban planning.
Future research will focus on three directions: enhancing the model’s sensitivity to minor
changes, integrating additional data sources, and exploring advanced transformer-based
architectures to further improve accuracy and scalability.

In this study, DSM was generated using dense image matching techniques. However,
airborne LiDAR-derived DSMs offer a higher level of detail, particularly in capturing
building edges, which could improve building segmentation in densely built urban areas.
Incorporating LiDAR-based elevation data may enhance the accuracy of building change
detection by reducing errors in boundary delineation.

Additionally, this study currently relied solely on RGB imagery. The integration of
near-infrared (NIR) data might further refine building classification, as the NIR band is
highly effective in distinguishing vegetation from building structures. Exploring multi-
spectral data sources could improve model performance, particularly in cases where RGB
imagery is insufficient for precise feature differentiation.

Finally, DL model selection plays a crucial role in improving change detection accuracy.
ChangeFormer [18] is a transformer-based DL model designed for Siamese change detection.
It can be easily modified to accommodate multiple input data sources. Adapting this model
to a multi-dataset may provide further improvements in feature extraction and classification,
enhancing the overall robustness of the building change detection process.
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