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A B S T R A C T   

This study aimed to assess the accuracy of the lidar sensor on an iPad Pro and its potential for creating 3D BIM. 
Data was collected through different scanning methods in various environmental conditions. The results showed 
that the iPad Pro’s lidar sensor produced accurate point clouds in static acquisition experiments with point 
distances of less than 1 mm from their best-fitting plane. However, in dynamic acquisition experiments, the 
distance increased to an average of 1 cm due to changes in the iPad Pro’s pose. The study also found that the 
accuracy of the registered point clouds was better when scanning smaller areas with limited pose changes. Based 
on the findings, the study recommends maintaining a distance of 1–1.5 m between the iPad Pro and the target, as 
the target’s color has minimal impact on scanning accuracy. Avoiding large posture changes while scanning can 
improve the accuracy of the point clouds in scan-to-BIM projects.   

1. Introduction 

1.1. Motivation 

Building information modeling (BIM) is a digital collaboration tool 
widely used in building construction and management (Eastman et al., 
2011). This technology allows civil engineers, architects, and related 
partners to collaborate efficiently. However, BIM analysis cannot be 
directly applied to existing or historical buildings due to the absence of a 
3D building information model. To address this issue, Rocha and Mateus 
(2021) proposed the scan-to-BIM technology, which reconstructs a 3D 
BIM from 3D point clouds using laser scanners. The quality and density 
of the point clouds significantly impact the accuracy of building shape in 
the scan-to-BIM process (Teo and Chen, 2007; Rebolj et al., 2017; Wang 
et al., 2022b). Thus, ensuring the quality of point clouds is critical for 3D 
building modeling. 

In recent years, low-cost laser scanners, e.g., the Apple iPad’s lidar, 
have gained increasing popularity among consumers. These mobile or 
handheld devices typically integrate multiple sensors to improve their 
3D scanning capabilities. While consumer-grade laser scanners may not 
match the accuracy of survey-grade professional scanners, they offer the 
advantage of capturing 3D geometrical information directly and effi-
ciently (Haenel et al., 2022). Consequently, low-cost laser scanners hold 
great potential for indoor building modeling. 

1.2. Previous studies 

Wang et al. (2019) proposed a four-step framework for implementing 
scan-to-BIM. The framework involves: (1) listing information about the 
building elements, (2) selecting an appropriate laser scanner, (3) 
capturing point clouds by scanning the area, and (4) reconstructing the 
BIM from 3D point clouds. Romero-Jarén and Arranz (2021) evaluated 
two point clouds acquired via static and dynamic laser scanning tech-
niques. Point cloud quality plays a crucial role in identifying building 
elements accurately. Rebolj et al. (2017) proposed several point cloud 
quality parameters (e.g., point density, accuracy, and coverage) to 
ensure the quality of scan-to-BIM applications. The experimental results 
showed that these parameters can be used as comparable indices be-
tween point clouds and the existing BIM. 

Due to the low-cost and ease-to-use, consumer-grade laser scanners 
are popular and cost-effective tools to acquire terrestrial 3D data. 
Several low-cost consumer-grade laser scanners are available, e.g., 
Google Tango, Microsoft Kinect series, and Apple lidars. Google Tango 
uses multi-sensor integration and the simultaneous localization and 
mapping (SLAM) technique on a mobile platform, and its depth sensor 
can reach up to 4 m. It can be used for augmented reality, indoor 
measurements, indoor positioning, and other indoor applications 
(Gradmann et al., 2018; Gülch, 2016; Nguyen and Luo, 2017). The 
Microsoft Kinect series has three versions: Kinect v1, Kinect v2, and 
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Azure Kinect. Azure Kinect has a distance error of less than 11 mm when 
the distance between sensor and object is over 3.5 m. Both Kinect v1 and 
v2 have one depth camera and one color camera. Kinect v1 measures 
depth with the pattern projection principle, while Kinect v2 and Azure 
Kinect use the continuous wave intensity modulation approach to obtain 
depth information (Tölgyessy et al., 2021). Other consumer-grade lidar 
sensors are the Apple iPad Pro and iPhone Pro (Hallereau et al., 2020; 
Luetzenburg et al., 2021). The Apple lidar module use a consumer-grade 
direct time-of-flight (dToF) for depth sensing and a vertical-cavity sur-
face-emitting laser (VCSEL) lidar system as the 3D sensor module. 

Several studies have evaluated the performance of Microsoft Kinect 
from different perspectives. Khoshelham (2012) compared the depth 
data obtained from Kinect via a mathematical geometry model with 
experimental data and found a random error of 4 cm. Hämmerle et al. 
(2014) compared the Kinect and terrestrial lidar on capturing natural 
karst cave 3D object. The experimental results showed that the Kinect 
was suitable for capturing flowstone walls and deriving morphometric 
parameters, but there are differences s (mean of 1 mm with 7 mm 
standard deviation) with lidar measurements on strongly varying and 
curved surfaces. Sabale and Vaidya (2016) reported an absolute mean 
percentage error of about 3.6% between the measured depth and true 
depth. Lachat et al. (2015) identified five main factors that affect 
scanning accuracy, including the number of depth frames, the preheat 
time of the sensor, the color of the target, the influence of sunlight, and 
the distance between the sensor and the target. 

During the past couple of years, there has been an increase in the 
number of mobile mapping applications incorporating Apple’s lidar 
sensor for acquiring 3D data. For the accuracy and quality assessments 
of 3D measurements, Chase et al. (2022) used the Modelar 3D scanning 
App and compared the tool’s efficacy to terrestrial laser scanning (TLS) 
used for surveying. The Modelar app achieved absolute accuracies of 
±3 cm horizontally and ±7 mm vertically and a relative accuracy of ±3 
cm. The study was conducted at a sub-centimeter geometrical accuracy 
to obtain the 3D measurements. Spreafico et al. (2021) conducted an 
experiment using the SiteScape App with two scanning methods (static 
and dynamic). They obtained between 560 and 16,382 points on a flat 
surface and a distance of less than 1 cm in dynamic acquisition between 
the points and their best-fitting plane. Additionally, Luetzenburg et al. 
(2021) utilized an iPad Pro’s lidar to scan a coastal cliff in Denmark and 
achieved an absolute accuracy of about 1 cm for target lengths larger 
than 10 cm, with a point cloud of high resolution. 

For forest applications, Wang et al. (2021) evaluated the efficacy of 
the lidar sensor of the iPad Pro 2020 for measuring the diameter at 
breast height (DBH) of urban trees. They used 3D Scanner App to 
establish 12 combinations of methods and settings for scanning the 
trees. The method with 10 mm resolution, high confidence, and 
multiple-tree mode achieved a detection rate of 97%. The highest ac-
curacy estimated for the DBH was 7.52% of the relative root mean 
square error (RMSE) for multiple-tree mode and 7.27% for single-tree 
mode. The low confidence setting resulted in significantly higher accu-
racy of DBH estimation than the high confidence setting. Additionally, 
the single-tree mode revealed a significantly higher accuracy for DBH 
estimation than the multiple-tree mode. Wang et al. (2022a) also 
explored the feasibility of using an iPad Pro’s lidar to measure the trees’ 
DBH. The coefficient of determination between the estimated DBH and 
field measurements was 0.52, indicating moderate accuracy. The RMSE 
of DBH estimation ranged from 2.82 cm to 8.24 cm. The accuracy of a 
smaller tree was higher than that of a larger tree. However, the distance 
between the sensor and the target did not have a significant effect on 
accuracy. Gollob et al. (2021) also performed an accuracy evaluation 
and compared the performance of an iPad Pro’s lidar and the GeoSLAM 
ZEB Horizon personal laser scanner in forest investment. The results 
showed that the detection rate of the iPad Pro’s lidar was 97.3%, with an 
RMSE of 3.13 cm and an operation time of 7.51 min, while GeoSLAM 
achieved a detection rate of 99.5%, with an RMSE of 1.59 cm and an 
operation time of 3.75 min. 

For cultural heritage applications, Teppati Losè et al. (2022) 
compared three iOS applications (SiteScape, EveryPoint, and 3D Scan-
ner Apps) for Apple’s lidar sensor. Various surveying scenarios for cul-
tural heritage were taken into consideration, including the sensor’s 
overall accuracy, the most effective acquisition strategies, operational 
constraints, and the 3D positional accuracy of the resulting products. 
SiteScape permitted the acquisition of a higher number of points than 3D 
Scanner App and EveryPoint, while 3D Scanner App produced less noisy 
point clouds by not increasing the number of points upon scanning the 
same area. Moreover, the experiments indicated that the lidar sensor 
was not significantly affected by illumination or the material. In addi-
tion to the study conducted by Vacca (2023), which evaluated the po-
tential of Apple’s lidar sensor for producing precise 3D models of 
cultural heritage applications, four Apps (i.e., Polycam, SiteScape, 3D 
Scanner, and Scaniverse) were tested for five case studies related to 
architectural-cultural heritage assets. Shape complexity was identified 
as the primary factor influencing the results. The experimental findings 
suggest that Apple’s lidar sensor can be utilized to generate 3D models 
suitable for metric documentation. It can also be applied to architectural 
and cultural heritage assets that are not excessively complex in form and 
texture. Balado et al. (2022) conducted a comparison of three lidar de-
vices (i.e., Faro X330, Zeb-Go, and iPad Pro) in heritage documentation. 
The point cloud obtained from Faro X330 was the only one that pro-
duced satisfactory results for individualizing stones. Conversely, the 
acquisitions from Zeb-Go and iPad Pro proved to be a rapid solution for 
obtaining complete models with a lower level of detail. 

For indoor application, Díaz-Vilariño et al. (2022) used an iPad Pro’s 
lidar to perform 3D modeling in two consecutive rooms. The local pre-
cision was evaluated by analyzing the planar segments extracted from 
the walls and resulted in an accuracy of 5.3 mm. The global correctness 
was evaluated by comparing the accuracy results of the iPad Pro’s lidar 
with that of the TLS data and a 3D model, and most of the iPad points 
were less than 10 cm away from the TLS points and 3D model surfaces. 
However, larger dimensional errors were observed in parts of the ceiling 
and a wall due to the process of point cloud creation and incomplete 
acquisition planning. Thus, special attention should be given to acqui-
sition planning to avoid complex trajectories. Despite these limitations, 
good color registration was observed in the data, and the iPad Pro 
showed great potential for 3D indoor mapping toward 3D reconstruction 
in small environments. 

1.3. Need for further study and research purpose 

An iPad Pro’s lidar shows great potential in BIM applications. Its 
lidar sensor can be used to reconstruct 3D mesh models for indoor en-
vironments. However, most studies have used such lidars for 3D metric 
surveys or forest mapping. The lidar’s application in scan-to-BIM has 
been relatively less discussed. Therefore, it is important to understand 
the accuracy of an iPad Pro’s lidar for scan-to-BIM applications. 

1.4. Objectives 

This study aimed to evaluate the accuracy of an iPad Pro’s lidar in 
indoor mapping for scan-to-BIM applications. To achieve this, various 
experiments were conducted, including static and dynamic acquisitions, 
and the influencing factors were systematically listed and discussed. The 
most significant factor was identified, and a practical scan-to-BIM 
application using the iPad Pro’s lidar was performed for evaluation. 
The accuracy of the point clouds was also evaluated, and the conditions 
that may affect the results during data acquisition were discussed. 
Overall, this study provides valuable insights into the use of an iPad 
Pro’s lidar for scan-to-BIM applications. 
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2. Methodology 

2.1. Instrumentations and tools 

This paper presents a study on the use of an Apple iPad Pro’s lidar as 
a low-cost consumer-grade lidar. The lidar sensor is based on the dTOF 
technology, where a laser with a near-infrared spectrum is emitted by a 
VCSEL with a 2D array appearance. 3x3 grids, each containing 8x8 
points, were emitted using its flash illumination feature. The lidar sensor 
captured 576 points (=3x3x8x8) in each frame by combining the VCSEL 
and the single-photon avalanche photodiode. The focal length of the 
lidar sensor was 26 mm, and the maximum scanning distance was 5 m. 
More details can be retrieved by referring to Luetzenburg et al. (2021). 

To evaluate the accuracy of the iPad Pro’s lidar sensor, reference 
data were collected using the Leica Disto D810 ranger, the GeoSLAM 
ZEB Horizon scanner and TLS Leica RTC360. Leica Disto D810 was used 
for distance measurement, with a range accuracy of 1 mm and a 
measuring range from 0.05 m to 200 m. The GeoSLAM ZEB Horizon 
included the Velodyne VLP-16 scanner, and 300,000 points were gained 
per second. The maximum range distance was 100 m, and the relative 
accuracy was about 6 mm. The terrestrial laser scanning Leica RTC360 
has an accuracy of 1.9 mm at 10 m distance. The maximum range dis-
tance was 130 m. The angular and range accuracies were 18′′ and 1.0 
mm + 10 ppm, respectively. 

Two applications, 3D Scanner and RTAB-Map Apps, were used to 

obtain the point clouds using the iPad Pro in this study. 3D Scanner App 
was used to obtain a color mesh model, where the lidar, camera, and 
inertial measurement unit worked together while scanning. The raw 
points were triangulated together to generate a mesh model using the 
ARKit, and the outputted point clouds were resampled from the mesh 
model (Luetzenburg et al., 2021). As 3D Scanner App provided 
high-density points, it was used in a static acquisition experiment. The 
second application, the RTAB-Map app, was used in the dynamic 
acquisition experiment. RTAB-Map is an open-source lidar and visual 
SLAM library for large-scale and long-term online operations (Labbé and 
Michaud, 2019). When this process recognizes the same location visu-
ally, the map is optimized with the loop closure constraints. Therefore, 
we used the RTAB-Map app in the dynamic acquisition experiment. 

2.2. Methodologies 

The purpose of this study was to assess the accuracy of an iPad Pro’s 
lidar in 3D indoor mapping. The proposed scheme comprises three 
major parts, as depicted in Fig. 1: (1) accuracy analysis of static acqui-
sition by a tripod; (2) accuracy analysis of dynamic acquisition by SLAM; 
and (3) accuracy analysis of the reconstructed 3D BIM model. 

2.2.1. Accuracy analysis of static acquisition 
In this study, two different scenarios were designed to analyze the 

static acquisition accuracy of an iPad Pro. Static acquisition was per-

Fig. 1. Workflow of the proposed methods.  
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Fig. 2. Distance analysis between the points and their best-fitting plane: (a) 3D point clouds acquired by iPad Pro Lidar; (b) the calculated best-fitting plane; (c) 
calculation of the point-to-plane distance for each point; (d) a histogram showing the distribution of P2P distance errors. 

Fig. 3. Configuration of distance analysis in static acquisition: (a) instrument setup at different distances from the target; (b) experiment field and instruments used 
in the study. 
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formed by fixing the iPad Pro on a tripod, and the target was a planar 
object. The first scenario examined the relationship between the depth 
distance and the accuracy of the iPad Pro, while the second scenario 
investigated the relationship between the target’s color and the iPad 
Pro’s accuracy. The analysis involved analyzing the relative accuracy 
using the least squares method to calculate the flatness of the point 
clouds. The 3D planar equation (Nakagawa et al., 2021) is shown in 
Equation (1), and the point-to-plane (P2P) distances (Equation (2)) were 
obtained to calculate the mean and standard deviation error. A 1 mm 
distance threshold was set, and the ratio of the points meeting the 1 mm 
criteria was calculated. Fig. 2 shows the results of calculating the 
point-to-plane distance from 3D point clouds and a fitted plane. Fig. 2a 
illustrates the 3D point clouds obtained from an iPad Pro Lidar. These 
points were utilized to derive a 3D plane (Fig. 2b) utilizing the 
least-squares adjustment method. Subsequently, the point-to-plane dis-
tance (Fig. 2c) for each point was computed utilizing Equation (2). 
Finally, Fig. 2d depicts the distribution of P2P distances using a 
histogram.  

aX+bY+cZ+d=0                                                                            (1) 

e=
⃒
⃒aXp + bYp + cZp + d

⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 + b2 + c2

√ (2)  

where (X,Y,Z) are the coordinates of the point; (a,b,c,d) are the co-
efficients of the planar equation; and e is the P2P distance. 

The scanning target in this experiment was a white wall considered 
to be a flat surface, and the iPad Pro was fixed on a tripod to scan the 
surface statically. Fig. 3a depicts the experimental setup. The distance 
between the wall and the instrument was initially set at 0.5 m, and the 
instrument was moved to 0.25 m away from the wall to the second 
position after completing the first scanning task. The depth distances 
ranged from 0.5 m to 5 m, and each distance was scanned ten times for 
30 s. The maximum scanning distance of the iPad Pro was 5 m, and the 

positions of the instruments were 4.5 and 5 m away from the wall when 
the distance was over 4 m. The experimental scenarios are illustrated in 
Fig. 3b. 

The iPad Pro’s scanner comprised a camera and a flash lidar sensor 
that operated through near-infrared light. To investigate the effect of the 
target color on scanning accuracy, this experiment analyzed the rela-
tionship between the target’s color and the data’s accuracy. Eight colors 
of poster paper (red, orange, yellow, green, blue, indigo, purple, and 
black) were sequentially pasted on a flat wall, and the iPad Pro was set 
up at a distance of 1 m from the colored paper. The colored paper and 
the scanning configuration are presented in Fig. 4. Ten scans were 
performed on each target, and only the colored area was selected for 
accuracy analysis. 

2.2.2. Accuracy analysis of dynamic acquisition 
In this study, a dynamic acquisition experiment was conducted in an 

indoor hallway with a vertical closed-loop path comprising two floors 
and two stairs. The dimensions of the area were approximately 62 x 9.5 x 
4.5 m3. The scanning task was initiated from the lower floor and pro-
ceeded through the stair to the upper floor, returning to the start point 
again via the second stair (Fig. 5). The iPad Pro was hand-carried 
throughout the scanning process, and efforts were made to maintain a 
steady scanning pace. The RTAB-Map App was employed for this task, 
given its closed-loop detection function that optimizes point clouds. 

To evaluate the accuracy of dynamic acquisition, two methods were 
employed. The first method involved the same analysis technique as that 
used in the static acquisition experiment. The planar walls and floors 
were manually segmented, and the statistics of the P2P distances were 
obtained. Additionally, a 1 cm threshold was set to calculate the ratio of 
the points meeting the specified criteria. The second method involved 
comparing the point clouds obtained by the iPad Pro with a higher- 
accuracy scanner (i.e., the GeoSLAM ZEB Horizon) using the cloud-to- 
cloud (C2C) analysis function of the open-source software, 

Fig. 4. Configuration of the target’s color analysis: (a) setup of the instrument; (b) nine colors used in this experiment. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. Experimental area and the scanning path in this task.  
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CloudCompare. This function involved registering the two point clouds 
through an iterative closest point (ICP) algorithm, which calculated the 
distance between the two point sets. The resulting C2C distances were 
displayed in different colors according to the distance error. This result 
also indicated which part of the point clouds contained a higher error. 

2.2.3. Accuracy analysis of the reconstructed 3D BIM models 
This study conducted a scan-to-BIM workflow in two test areas. The 

first area was an indoor hallway with a vertical closed-loop path, as 
described in section 2.2.2. The second area was a meeting room with 
dimensions of approximately 4.8 x 3.3 x 3.0 m3. In the dynamic acqui-
sition of the meeting room, an iPad Pro mounted on a motion control 
device rotated 360◦ horizontally while scanning (Fig. 6). The working 
principle of this scanning method is similar to TLS. Therefore, this dy-
namic scanning can be treated as TLS iPad. The co-registration of TLS 
iPad data is based on the Lidar-SLAM technique, which matches point 
clouds between successive scans and registers them into a unified co-
ordinate system. On the other hand, the TLS Leica uses precise angular 
measurement to merge all profiling scans into a unified coordinate 
system. The co-registration of TLS iPad stations relies on software post- 
processing, while the co-registration of TLS Leica multiple linear scans 
relies on the angular accuracy of hardware. Therefore, the data co- 
registration mechanism of TLS iPad is slightly different from TLS 
Leica. The instrument was set up in four locations to capture each corner 
of the room (Fig. 7a), and the resulting four datasets were co-registered 
using CloudCompare’s ICP registration (Fig. 7b). 

This study focuses on the discussion of scan-to-BIM using iPad Pro 
lidar. The core of scan-to-BIM is to generate a 3D model from a 3D 
scanner for BIM application. As the 3D model for BIM applications 

Fig. 6. Motion control device used in the TLS iPad task.  

Fig. 7. Point clouds obtained by registering the four point clouds: (a) four point clouds obtained at four different locations; (b) registered point clouds.  

Fig. 8. Building the BIM model by point clouds in Autodesk Revit: (a) the floor’s building layout; (b) the sectional elevation in Autodesk Revit.  
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includes geometrical and attribute information for each building 
element, this study uses one of the popular software (i.e., Autodesk 
Revit) to create a 3D model together with attributes. The IFC is a basic 
standard format for exchanging BIM models. The constructed 3D model 
can be easily exported to IFC using the export function in Revit. 
Therefore, this study’s 3D model (i.e., in.rvt format) can also be con-
verted to the IFC model for exchange (i.e., in.ifc format). 

To minimize the errors caused by automatic processing, this study 
manually built the BIM model from point clouds using Autodesk Revit 
2022. The scan-to-BIM process was facilitated by a plug-in software, 
Undet, which imported the point clouds into Revit and transformed 
them into each floor’s building layout (Fig. 8). The first step of the 
workflow involved loading the point clouds into the floor’s building 
layout and sectional elevation. The second step was to align the floor in 
the point clouds with the reference elevation line to define the model’s 
starting and ending heights. The point cloud’s intensity was used to 
locate elements such as the walls, beams, and pillars. The pillars were 
plotted first, followed by the beams and walls, with frequent switching 
between the floor’s building layout window and the sectional elevation 
window to account for varying wall heights. Finally, the floor was 
drawn, and the windows and doors were added to enhance the model’s 
appearance. After building the BIM model from the point clouds, its 
dimensions were compared to the reference dimensions as absolute ac-
curacy. The BIM’s dimensions were measured in Revit, while the 
reference dimensions were obtained using the Leica Disto D810 ranger. 

3. Results and Discussions 

The evaluations were conducted in three stages. In the first stage, the 
accuracy of the iPad Pro in static acquisition was evaluated using a 
tripod. In the second stage, the point clouds obtained from the iPad Pro 
and GeoSLAM were compared in handheld dynamic acquisition. This 
experiment was conducted in an indoor two-floor environment. In the 
third stage, we analyzed the accuracy of the BIM model reconstructed 
from the point clouds obtained from motion control and handheld dy-
namic acquisition. To quantitatively verify the accuracy, in-situ laser 
ranger measurements were used to calculate the absolute errors. 

3.1. Accuracy analysis of static acquisition 

In this study, a static acquisition experiment was conducted to 
evaluate the flatness of the point clouds obtained by scanning a flat 
surface using an iPad Pro. For each scan, the best-fitting plane was 
calculated, and the statistical data of the P2P distances (mean and 

standard deviation) were provided for comparison. The statistical data 
provided the flatness metrics for comparison at different distances (0.5 
m–5 m), and a pre-defined 1 mm P2P distance was used to check the 
proportion of the points fulfilling the requirement. 

Fig. 9a presents the relationship between the scanning distance and 
the standard deviation of the P2P distances. The results showed that the 
standard deviation was proportional to the distance between the iPad 
Pro and the scanning surface. The standard deviations were better than 
2 mm before 4.5 m, but rapidly increased after the depth distance of 4.5 
m, which was close to the iPad Pro’s maximum scanning distance (5 m). 
Thus, larger errors were observed for the scanning depths close to the 
maximum distance compared to those closer to the device. 

Furthermore, Fig. 9b shows the percentage of the P2P distances 
fulfilling the 1 mm requirement with respect to the scanning distance. 
The results indicated that about 90% of the P2P distances were below 1 
mm when the scanning distance was less than 1.5 m. However, the 
proportion decreased to 60% when the scanning depth distance reached 
4 m, and only 13% fulfilled the requirement at a scanning distance of 5 
m. Despite possible environmental influences on the scanning data, the 
study ensured careful data collection in an indoor environment and 
observed less than 15% variation in each distance. The experimental 

Fig. 9. Relationship between the scanning distance and points’ error: (a) the standard deviation of the point-to-plane distances in static acquisition; (b) the ratio of 
points meeting the 1 mm threshold in static acquisition. 

Fig. 10. Dot plot of the ratio results according to the different target colors. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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results demonstrated that the percentage of points fulfilling the 1 mm 
requirement was inversely proportional to the scanning distance. In 
summary, the distance between an iPad Pro and the scanning target 
should be between 1 m and 1.5 m. Considering the completeness and 
point density, Bobrowski et al. (2023) observed that distances between 1 
and 2 m are more appropriate when using the iPad Pro in forest appli-
cations. Therefore, for indoor and outdoor applications, distances less 
than 2 m are most suitable when using an iPad Pro. 

This section presents an analysis of the influence of target color on 
distance measurement using an iPad Pro’s lidar. Seven different colors 
were tested in this experiment. The percentage of points whose distance 
was less than 1 mm P2P distance was calculated and compared for each 
target color. As shown in Fig. 10, the percentage of points meeting this 
requirement ranged from 60% to 80% regardless of the target’s color. 
The numerical difference between the colors, including red, orange, 
yellow, green, blue, indigo, purple, and black, was found to be minimal. 
As no noticeable differences in the flatness were observed between the 
light and dark colors, it was difficult to categorize the results based on 
this disparity. Although the blue and indigo targets performed particu-
larly well, no clear trend was observed between the colors. Overall, the 
results suggest that the color of the target has a random effect on the 
scanning accuracy of an iPad Pro’s lidar. Additionally, it should be noted 
that the dToF technique used in an iPad Pro’s lidar is expected to be less 
affected by color compared to the indirect time-of-flight technique used 
in the Kinect v2 (Haider and Hel-Or, 2022), which may be a contributing 
factor to the sensor’s relatively low sensitivity to color. These findings 
employed an additional metric to supporting Teppati Losè et al.’s (2022) 
experiment in which Apple’s lidar sensor was not considerably influ-
enced by either illumination or the material. 

3.2. Accuracy analysis of dynamic acquisition 

This section presents the results of the dynamic acquisition task 
performed using an iPad Pro’s lidar sensor, which involved scanning an 
area comprising two floors and two stairs with a vertical closed-loop 
path using the RTAB-Map app. The total duration of the scanning pro-
cess was approximately 5 min, covering a total distance of around 150 
m. The resulting co-registered point clouds comprised 453,614 points, 
with an average density of 300 pt/m2. As the sensor was mostly facing 
the floor during scanning, the point cloud data primarily comprised the 
floor and parts of the wall. Several flat areas were segmented, including 
the walls and floors, for further analysis of plane fitting and the P2P 
distance. The accuracy of the scanning was quantified by calculating the 
ratio of the points that met the accuracy threshold. 

Table 1 presents the results of the dynamic acquisition experiment. 
Due to the inherent variability of dynamic acquisition, less than 20% of 
the points met the 1 mm threshold in almost every data, thereby making 
it necessary to use a 1 cm threshold. With the 1 cm threshold, over 80% 
of the points met the requirement. Due to the dynamic changes of the 
iPad Pro from time to time during this scanning task, it was reasonable to 
expect that the performance of the scanning accuracy would not be as 
high as the result in the previous static acquisition experiment. 

The performance of the lidar sensor was observed to vary between 
the floor and the wall data. Specifically, the floor data exhibited better 
flatness performance compared to the wall data. This difference in 
performance can be attributed to the orientation changes of the sensor 
during scanning. The iPad Pro was primarily facing the floor and moved 
left and right to obtain the wall data. As a result, the floor was always 
included in the sensor’s field of view and underwent fewer posture 
changes, whereas the wall on the two sides was not always contained in 
each frame, resulting in larger posture changes during scanning. 
Therefore, the posture changes during scanning was the main reason for 
the observed differences in accuracy between the floor and wall data. 

In this section, GeoSLAM was employed to obtain points clouds of 
higher accuracy for comparison with the iPad Pro’s lidar. The point 
clouds acquired by GeoSLAM and the iPad Pro were co-registered using 
the ICP algorithm, which globally minimized the distance between the 
two datasets. Through quantitative analysis, the C2C distance between 
GeoSLAM and the transformed point clouds using the iPad Pro was 
computed. Since the point cloud data acquired by GeoSLAM was used as 
the reference data in this experiment, to reduce the impact of gaps and 
discrepancies in coverage between these two datasets (e.g., the ceiling), 
a predefined 1 m cut-off distance was utilized during C2C analysis. As 
shown in Fig. 11, the difference between the two point clouds was 
mostly smaller than 0.20 m. As the iPad Pro’s acquisition mainly focused 
on the floor, most of the large errors appeared to be distributed along the 

Table 1 
Ratio of points meeting the threshold in dynamic acquisition.  

iPad Pro  

Threshold 
(1 mm) 

Threshold 
(1 cm)  

Threshold 
(1 mm) 

Threshold 
(1 cm) 

Wall_01 11.79% 90.57% Floor_01 16.54% 93.19% 
Wall_02 9.89% 81.27% Floor_02 51.22% 100.00% 
Wall_03 12.45% 90.36% Floor_03 32.90% 98.86% 
Wall_04 22.64% 94.97% Floor_04 13.40% 85.33% 
Wall_05 3.32% 49.82% Floor_05 27.37% 90.98% 
Wall_06 24.49% 98.30% Floor_06 10.88% 78.00% 
Wall_07 8.79% 66.21% Floor_07 14.74% 96.60% 
Wall_08 16.14% 94.44% Floor_08 21.81% 96.59% 
Wall_09 0.57% 42.72% Floor_09 6.19% 94.43% 
Wall_10 61.90% 100.00% Floor_10 15.70% 86.68%  

Fig. 11. Results of the cloud-to-cloud analysis between iPad Pro Lidar and GeoSLAM.  
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walls. The total number of observations was 453,614 points, and the 
mean C2C distance was approximately 3.9 cm, with a standard deviation 
of approximately 5.5 cm. Overall, the C2C analysis results indicated 
differences between the iPad Pro and GeoSLAM. The C2C errors of the 
floor (marked in blue color in Fig. 11) were smaller than those distrib-
uted along the wall (green color in Fig. 11). 

To compare the point clouds generated by TLS iPad and TLS Leica 
RTC360, we acquired data of the same room using the surveying-grade 
TLS Leica RTC360. While the TLS Leica RTC360 only required 2 stations 
to acquire the room, the TLS iPad needed 4 stations due to its limitation 
of frame FOV. Moreover, the average point density of TLS Leica RTC360 
(about 54000 pts/m2) was much higher than that of TLS iPad (about 

Fig. 12. Comparison of point clouds from the TLS iPad and TLS Leica: (a) point clouds captured by the TLS iPad; (b) point clouds captured by the TLS Leica RTC360; 
(c) results of the cloud-to-cloud analysis between TLS iPad and TLS Leica RTC360. 

Fig. 13. Comparison of point clouds from the iPad Pro and GeoSLAM: (a)–(c) point clouds captured by the iPad Pro; (d)–(f) point clouds captured by GeoSLM; (g) and 
(j) location of profiles; (h) and (k) profiles from the iPad Pro; (i) and (j) profiles from GeoSLAM. 
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7000 pts/m2), and the average point spacing of TLS Leica (about 0.4 cm) 
was finer than that of TLS iPad (about 1.2 cm). In this study, we 
employed automatic ICP fine registration to co-register the TLS iPad and 
TLS Leica point clouds. The maximum number of sub-sampled points 
was set at 500,000, with a convergence criterion of the error difference 
between two iterations being lower than 0.00001. The root-mean- 
squared error was calculated on a total of 305,444 points and found to 
be 1.5 cm. We performed a C2C analysis (Fig. 12) with a total of 863,543 
points, and the mean C2C distance was approximately 2.4 cm, with a 
standard deviation of approximately 3.1 cm. Overall, the C2C analysis 
results indicated that there were differences of about 3 cm between the 
TLS iPad and TLS Leica RTC360. 

In the qualitative check, GeoSLAM was used for undertaking a 
qualitative comparison with the point clouds generated using the iPad 
Pro. The point clouds obtained by both devices showed similar overall 
appearances, as shown in Fig. 13. The iPad Pro demonstrated the ability 
to capture vertical changes in data. Fig. 13b and c illustrate the stair 
point clouds obtained by both scanners via handheld dynamic acquisi-
tion. Fig. 13h and i compare the profiles from both scanners, where steps 
in the stairs can be identified in the iPad Pro’s data, but the shape from 
GeoSLAM was more detailed. Fig. 13k and l compare the floor captured 
by the iPad Pro and GeoSLAM. Notably, GeoSLAM could scan the ceiling 
of the stair, but the iPad Pro did not contain the point clouds of the 
ceiling. Fig. 13e and f depict the point clouds on the floor of the corridor, 
where GeoSLAM obtained more complete wall information than the 
iPad Pro. The point density of the iPad Pro on the floor was about 500 
pt/m2, while the point density of GeoSLAM was about 1600 pt/m2. The 
point density of GeoSLAM was higher than that of the iPad Pro. 

Additionally, the scanning angle for GeoSLAM was 360◦ in the vertical 
and horizontal directions, whereas the field-of-view of the iPad Pro was 
approximately 60◦ × 48◦. Therefore, GeoSLAM could cover a larger area 
than the iPad Pro. 

3.3. Accuracy analysis of the reconstructed 3D BIM models 

3.3.1. Evaluation using the iPad Pro’s lidar for scan-to-BIM application in a 
small room 

After implementing the scan-to-BIM process, a BIM model of the 
meeting room was constructed. Fig. 14 shows a comparison between the 
dimensions of the BIM model and the actual dimensions of the meeting 
room. To evaluate the accuracy, length, width, and height measure-
ments were taken thrice. Measurements from the wall to the pillar were 
also taken. Table 2 presents the results of the accuracy analysis, 
revealing that the dimensional error was less than 1% for all measure-
ments. In summary, using the iPad Pro to obtain point clouds and 
perform scan-to-BIM in a room was viable. When the scanning areas 
were limited in size, the mode’s accuracy was good, with errors typically 
kept under 1%. Additionally, mounting the iPad Pro on a motion control 
device improved the instrument’s stability during scanning, resulting in 
better outcomes. 

The regulation document provided by U.S. General Services 
Administration (USGSA, 2009) was used as a reference to compare the 
level of detail of scan vs BIM. The regulation has been designed to 
compare the BIM model and the corresponding point clouds with five 
levels of detail. The higher the level of detail, the higher the accuracy. 
For instance, the tolerance for level 1 was less than 51 mm, while the 
tolerance for level 5 was less than 3 mm. The base category included 
point cloud, plan, and elevation. Point cloud indicates the distance be-
tween two points in a point cloud compared to the reference distance 
between the same two points in the actual scene. Plan implies the 2D 
horizontal length of the model and the reference length, while elevation 
indicates the height of the model and the reference height. To meet the 
level 2 criteria, the error should be less than 13 mm. According to the 
accuracy analysis of this BIM model presented in Table 2, the plan and 
elevation distance errors ranged from 6 mm to 25 mm. Therefore, the 
point clouds obtained from the iPad Pro’s lidar and motion control 
partially fulfilled the requirements of level 2. In summary, this task 
could not fully meet the level 2 requirements; however, it came close to 
meeting the USGSA standards. 

Fig. 14. BIM model and the corresponding point clouds for the scan-to-BIM process: (a) reconstructed BIM model and locations of check lines; (b) point clouds 
obtained by the iPad Pro’s lidar. 

Table 2 
Comparison between the BIM and the model’s true dimensions.  

Model 1 (Test area 1)  

BIM (m) Reference Dimension (m) Difference(m) Error(%) 

Length L0 4.450 4.449 0.001 0.02% 
Length L1 4.750 4.765 0.015 − 0.31% 
Length L2 4.750 4.762 0.012 − 0.25% 
Length L3 4.750 4.760 0.010 − 0.21% 
Width W0 3.040 3.015 0.025 0.83% 
Width W1 3.337 3.321 0.016 0.47% 
Width W2 3.337 3.321 0.016 0.47% 
Width W3 3.337 3.321 0.016 0.47% 
Height H1 2.960 2.960 0.000 0.00% 
Height H2 2.960 2.966 0.006 − 0.20% 
Height H3 2.960 2.966 0.006 − 0.20%  
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3.3.2. Evaluation using the iPad Pro’s lidar for scan-to-BIM application in a 
large area 

The Scan-to-BIM process was used to generate a BIM model of the 
large area based on the point cloud data collected during the dynamic 
acquisition experiment. A comparison between the dimensions of the 
BIM model and the actual dimensions of the area is shown in Fig. 15. The 
accuracy of the BIM model was evaluated by measuring the length, 
width, and height. Fig. 16 shows the locations of the check lines for 

evaluating the horizontal and vertical distances. There were 21 hori-
zontal and 20 vertical check lines for evaluating the distances. The size 
of this test area was about 61 x 9.5 x 4.5 m3, which was much larger than 
the previous meeting room (i.e., 4.8 x 3.3 x 3.0 m3). As shown in Table 4, 
the relative accuracy in the horizontal direction was better than 7%. 
However, the maximum measurement distance for the iPad Pro was 
about 5 m, and the accumulated error of the point clouds reached 1.7 m 
for check lines longer than 60 m. The error was mainly caused by posture 

Fig. 15. Comparison between the point clouds and BIM in Revit: (a) point clouds obtained using the iPad Pro’s lidar; (b) reconstructed BIM model using the point 
clouds; (c) overlapped point clouds and the BIM model from the top view. 
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changes while scanning the area using the handheld iPad Pro. Table 5 
shows that there were limited errors in the vertical direction. The BIM 
built by the scan-to-BIM workflow showed better vertical accuracy than 
horizontal accuracy. A possible reason could be that the actual height 

between the floor and ceiling was less than 5 m. The iPad Pro could 
capture the height between the floor and ceiling directly. 

Table 4 illustrates that the error was generally smaller when the 
verified distance was shorter. The verified distance between two targets 
within the same scanning frame also leads to a lower error. Based on 
these findings, we posit that the length of the verified distance may 
impact the accuracy of the results, and the longer verified distance 
accumulated more error. Furthermore, it is reasonable to assume that 
posture changes of the iPad Pro during scanning can also impact accu-
racy. This was supported by the lower error observed in Fig. 16 when the 
distance between two targets measured in the same scanning frame in-
dicates no posture changes. To sum up, according to the previous 
analysis, the static acquisition experiment, the dynamic acquisition 
analysis, and the evaluation of the scan-to-BIM application, a limited 
posture change while scanning yields more accurate results. These 
experimental results suggest that the iPad Pro is only appropriate for 
mapping small environments. When comparing indoor and outdoor 
mapping, Díaz-Vilariño et al. (2022) also found that small environments 
were more suitable for an iPad Pro lidar. 

To evaluate the compliance of the scan-to-BIM model with the 
USGSA’s regulations, the accuracy of the model was compared with the 
regulations outlined in Table 3. The results showed that the model did 

Fig. 16. BIM obtained by undertaking scan-to-BIM of the point clouds in a large area. The analysis was performed by comparing the dimension in the horizontal and 
vertical directions. 

Table 3 
Level of detail for levels 1 and 2 of the scan vs BIM regulations provided by the U. 
S. General Services Administration.  

Level 
of 
detail 

Area of 
interest 

Description Category Tolerance 
(mm) 

Minimum 
artiface size 
(resolution) mm 
x mm 

Level 1 1 Point cloud Base ±51 152 x 152 
Level 2 2-A Plan Base ±13 25 x 25 

Elevation Base ±13 25 x 25 
Surface 
model 

Option ±13 25 x 25 

Point cloud Base ±13 25 x 25 
2-B Elevation Base ±13 25 x 25 

Surface 
model 

Option ±13 25 x 25 

Point cloud Base ±13 25 x 25  

Table 4 
Comparison between BIM and the true dimensions of the model in the horizontal direction.   

Horizontal Dimensional Difference  

Model 2 (Test area 2)  

BIM’s length(m) Actual length(m) Error (m) Error (%)  BIM’s length(m) Actual length(m) Error (m) Error (%) 

Target D01 3.800 3.737 0.063 1.69% Target D11 2.301 2.415 − 0.114 4.72% 
Target D02 1.989 1.949 0.040 2.04% Target D12 3.800 3.963 − 0.163 4.11% 
Target D03 2.431 2.404 0.027 1.14% Target D13 60.200 58.462 1.738 2.97% 
Target D04 3.800 3.681 0.119 3.23% Target D14 1.900 1.949 − 0.049 2.51% 
Target D05 2.100 2.138 − 0.038 1.78% Target D15 2.476 2.330 0.146 6.27% 
Target D06 60.200 58.454 1.746 2.99% Target D16 3.000 3.152 − 0.152 4.82% 
Target D07 2.476 2.339 0.137 5.87% Target D17 2.400 2.440 − 0.040 1.64% 
Target D08 2.400 2.456 − 0.056 2.28% Target D18 8.721 8.797 − 0.076 0.87% 
Target D09 2.800 2.926 − 0.126 4.31% Target D19 2.490 2.650 − 0.160 6.03% 
Target D10 2.400 2.472 − 0.072 2.91% Target D20 3.010 3.070 − 0.060 1.96%      

Target D21 8.721 8.774 − 0.053 0.60%  
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not meet the level 2 standard due to the larger size of the scanning area 
compared to the previous task. Additionally, handheld scanning led to 
registration errors between the two poses. Therefore, it can be concluded 
that the point cloud model obtained using the iPad Pro with the motion 
control device partially achieved level 2 compliance according to the 
USGSA’s regulations when the area’s dimensions were smaller than the 
meeting room in our previous task (4.8 x 3.3 x 3.0 m3). However, as the 
dimensions of the area increased, the model’s ability to meet the level 2 
regulation requirements became more challenging. Overall, the results 
suggest that minimizing posture changes during scanning can improve 
the accuracy of scan-to-BIM models in large areas. 

4. Conclusions and future works 

This study investigated the scanning accuracy of the iPad Pro, which 
contains a low-cost consumer-grade flash lidar sensor with a maximum 
scanning distance of 5 m and is suitable for indoor 3D point cloud 
collection. A systematic analysis was conducted to evaluate the scanning 
accuracy of the iPad Pro through experiments, and a scan-to-BIM pro-
cess was applied to the acquired 3D point clouds to discuss the accuracy 
of the resulting BIM model. 3D Scanner and RTAB-Map Apps were uti-
lized for indoor scanning and modeling. The static acquisition experi-
ment revealed that while scanning a flat surface with a distance of less 
than 1.5 m, about 90% of the points contained a distance lower than 1 
mm to their best-fitting plane. However, when the distance increased to 
4 m, the ratio decreased to about 50%, and when the scanning distance 
was longer than the maximum scanning distance of 5 m, only about 10% 
of the points achieved the 1 mm threshold. Furthermore, based on the 
experimental results, the target’s color did not have a noticeable impact 
on the scanning accuracy. 

In the dynamic acquisition experiment, an iPad Pro was employed as 
a handheld moving scanner. The flat surface of the model was 
segmented and analyzed by the same method used in the static acqui-
sition experiment. Although less than 20% of the points fulfilled the 1 
mm threshold, adjusting the threshold to 1 cm resulted in about 80% of 
the points meeting the 1 cm requirement. The experiment indicated that 
the relative accuracy of dynamic acquisition was lower than that of 
static acquisition. The standard deviation of the C2C difference between 
the point clouds obtained by the iPad Pro and GeoSLAM was 5.5 cm. As 
the iPad Pro’s acquisition mainly focused on the floor, most of the large 
errors appeared to be distributed along the walls. When implementing a 
scan-to-BIM application using the point cloud data obtained from the 
iPad Pro, a small scanning area and a steady scanning pace led to better 
accuracy. The point clouds obtained using the motion control device 
after applying scan-to-BIM contained absolute errors smaller than 1%, 
while the point clouds obtained by handheld scanning contained errors 
of about 7%. However, scanning a smaller area resulted in better ac-
curacy. The study provides evidence that the iPad Pro’s lidar sensor is 
capable of producing accurate point clouds as well as 3D BIM in certain 
conditions. However, it still cannot meet the level of accuracy required 

by the USGSA BIM guide for 3D imaging. Therefore, it is recommended 
to carefully select laser scanning equipment if a high level of accuracy is 
required to meet the standards outlined in the USGSA standards. 

This study focused on determining an iPad Pro lidar’s scanning ac-
curacy and using it in a scan-to-BIM application. Two issues can be 
addressed in future works. First, since the statistical accuracy of the 
point clouds was determined in this research, the result provided some 
indication of using the point clouds. Post-processing of the data, such as 
off-line pose estimation, may improve the iPad Pro’s registration accu-
racy. Second, the scan-to-BIM process was done manually in this study. 
Future works can focus on converting the point clouds into BIM 
automatically. 
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